
Audio Embedding with an Error Correction

Algorithm

Husnu Narman

Introduction

Multimedia data hiding is the one of the most

important topics which has numerous

application areas. Such applications include,

but not limited to, security, media, covered

communication, and annotation. [4],[5].

Therefore, it takes considerable attention by

researchers. Many hiding algorithms have

been proposed to develop a technique to hide

data in a secure way.

There are two important requirements in audio

embedding. Two of them, which are

perceptual transparency, and high data rate of

hidden data mentioned by Nedeljko and

Seppänen [6]

Steganography is an art of language which

takes advantages of the weakness of the

human auditory and visual systems to

communicate. Audio steganography is

challenging to human auditory system [HAS].

The human ear can detect changes in audio

files as low as one part in 10 million. [3],[7].

Therefore, throughout this paper it is assumed

that small changes in an audio file cannot be

detected by HAS. However, due to the audio

file specifications, we can encounter errors

while decoding hidden data from embedded

audio. It is important to protect the ratio

between transparency, decoding without

errors, and hidden data rate. To manage this

goal, numerous techniques to hide data behind

an audio file have been developed. Modifying

lower tones, changing frames, translating peak

to integer, and several others can be found in

the literature.

While hiding data inside a waveform audio

file (WAV), the audio file should be modified

by considering the two requirements

mentioned above. The best way to accomplish

this task is to make small changes in the peaks

of WAV file which have values between [-1,

1]. For example, the audio values are

transformed to integers between 0-255 by

using;

𝑓𝑖𝑥 (
255

2
×(𝑎𝑢𝑑𝑖𝑜 𝑝𝑒𝑎𝑘 𝑣𝑎𝑙𝑢𝑒 + 1)

where fix is a MATLAB function that truncates

the decimal part of a rational number. To make

small modifications, 0-1000 range can be used.

To illustrate;

𝑓𝑖𝑥 (
1000

2
×(𝑎𝑢𝑑𝑖𝑜 𝑝𝑒𝑎𝑘 𝑣𝑎𝑙𝑢𝑒 + 1)

Detailed explanation about how to make use of

these modifications are discussed in the next

section.

Due the latter modification, the stego cannot be

decoded correctly. Hence, it is necessary to

implement error correction in the code to protect

stego. In this paper, Hamming Code [9] is used

for error correction.

Proposed Algorithm

In this section, two audio steganography

algorithms are explained. The first one is to

use any functional transform to the specified

integer range within threshold to hide the

message. Second algorithm is audio

embedding using error correction method

based on functional integer transformation.

Integer transformation is also used by Agaian

et al. [3]. The method described by Agaian is

improved to obtain higher SNR and higher

rate of hidden data.

The aim of the second algorithm is to reduce

the error of hidden message after decoding

even if the hidden message can be a large file

or image. The difference of this method from

the first one is implementation of Hamming

Code.

First Algorithm - Encoding:

Step1: Translate secret file to binary and read

audio file using wavread function.

Step2: Find the peaks to hide based on the user

specified threshold value.

Step3: Use a transformation function to obtain

integer numbers for the peak values (by using

the range between 0 and 255, the hidden data

recovered with negligibly small errors.

However, when the ranged is increased, the

hidden data is recovered with noticeable

errors.).

Step4: Modify peak not to exceed range [-1, 1]

and the [-threshold, threshold] to hide stego

file data bits.

Step5: Write the modified audio file using

wavwrite function.

First Algorithm - Decoding:

Step1: Read the audio file using wavread

function

Step2: Apply the integer transformation to the

peaks which are outside of [-threshold,

threshold] interval.

Step3: Evaluate mod(2) of transformed

integers and add to buffer.

Step4: Invert the buffer in binary form to

secret data.

Step5: Display the result.

Second Algorithm - Encoding:

Step1: Translate secret file to binary and read

audio file using wavread function.

Step2: Split the binary stego file into eight bits

(Depending on which error correction is

selected).

Step3: Send to error handler to create 12 bit

blocks with error correction bits.

Step4: Find the peaks to hide based on the user

specified threshold value.

Step5: Use a transformation function to obtain

integer numbers for the peak values.

Step6: Modify peak not to exceed range [-1, 1]

and the [-threshold, threshold] to hide error

correction bits using 0-255 interval integer

transformation.

Step7: Modify peak not to exceed range [-1, 1]

and the [-threshold, threshold] to hide stego

file bits using 0-1000 interval integer

transformation or any other suitable ranges

Second Algorithm - Decoding:

Step1: Read the audio file using wavread

function.

Step2: Split into 12 bit blocks.

Step3: Apply integer transformation for both

error correction bits (range 0-255) and stego

file data bits (0-1000 or any other suitable

ranges).

Step4: Evaluate mod (2) of transformed

integers.

Step5: Check the blocks for error using

Hamming Code.

Step6: Add the corrected 8 bit blocks to

buffer.

Step7: Invert the buffer in binary form to

secret data.

Experimental Result

Signal to Noise Ratio (SNR) and Mean Square

Error (MSE) measures are calculated for the

raw audio and the embedded audio files for

comparison. In addition, another measure,

Percentage Stego Error (PSE), is presented to

compare the decoded stego file with the

original stego file.

𝑀𝑆𝐸(𝜑) = ∑ 𝐸((𝜑 − 𝜑∗)2)

𝑆𝑁𝑅(𝜑) = 10 ∙ log10 [
∑ 𝜑2

𝑀𝑆𝐸(𝜑)
]

𝑃𝑆𝐸 =
∑ 𝐹𝑜𝑢𝑛𝑑 𝑒𝑟𝑟𝑜𝑟 𝑏𝑖𝑡𝑠

𝑆𝑡𝑒𝑔𝑜 𝑠𝑖𝑧𝑒
×100

Table 1 and Table 2 show the analysis of five

audio files. (Same threshold, 0.08, is used for

all experiments)

As it can be observed from tables, by looking

at PSE values, 0-1000 integer range

transformation with error correction ([0-

1000]*) is able to recover the hidden data

more correctly than 0-1000 range

transformation without error correction. The

tables also show that [0-1000]* method

always has higher SNR than 0-255 range

transformation.

Conclusion

Two algorithms for digital audio

steganography are presented. Experimental

results show that the changes in audio section

to hide data are inaudible while the integer

range is large enough. We also successfully

developed the audio embedding using an error

correction method based on functional integer

transformation algorithm to decrease the

amount of error while decoding. Hamming

Code is selected as the error correction

algorithm because of its easy implementation.

The error correction provides an additional

security wall since the error correction bits are

only known by the programmer. Future work

will include the study of other error correction

algorithms.

Table 1: MSE, SNR, and PSE for two audio

files processed with different integer intervals

for relatively large stego files

Table 2: MSE, SNR, and PSE for two audio

files processed with different integer intervals

for relatively small stego files

References

[1] K. Gopalan and S. Wenndt, “Audio

Steganography for Covert Data Transmission

by Imperceptible Tone Insertion”,

Communication Systems and Applications -

2004

[2] S. Agaian, D. Akopian, O. Caglayan, and

S. A. D’Souza, (2005) “Lossless Adaptive

Digital Audio Steganography” In Proc. IEEE

Int. Conf. Signals, Systems and

Computers, pp. 903- 906.

[3] K. Gopalan,(2003) “Audio Steganography

Using Bit Modification”, Proc. of the IEEE

2003 International Conference on Multimedia

and Exposition (ICME 2003).

[4] N. Cvejic “Reduced Distortion Bit-

Modification for LSB Audio Steganography”,

Journal of Universal Computer Science, 11(1):

56-65.

[5] R. J Anderson and F. A. P. Peticolas ,

(2001) “On the Limits of the Steganography”,

IEEE Journal Selected Areas in

Communications, 16(4), pp. 474-481

[6] N. Cvejic and T. Seppänen, (2004)

“Increasing Robustness of High Bit Rate LSB

Audio Watermarking Using a Novel LSB

Embedding Method.” Proc. International

Conference on Information Technology, Las

Vegas, NV, 533-537.

[7] W. Bender, D. Gruhl, N. Morimoto, and A.

Lu,(1996) “Techniques for Data Hiding”,

IBM System Journal, Vol. 35, Nos. 3&4, pp.

313-336

[8] S. Agaian, D. Akopian, and S. A. D’Souza,

“FreQuency Domain Based Secure Digital

Audio Steganography Algorithms”, Proc of

IEEE SP/CAS, 2005 International Workshop

on Spectral Methods and Multirate Signal

Processing, SMMS, June 20-22, 2005, Riga,

Latvia.

[9] R.W. Hamming, “Digital Filters”, Section

5.8.

