

# Topological Characteristic of Wireless Network

#### Its Application to Node Placement Algorithm

Husnu Saner Narman

# Outline



- Background
- Motivation
- Papers and Contributions
- First Paper
- Second Paper
- Third Paper
- Future Works
- References

#### **Background: Network Science**



**Network Science** : Studying of the theoretical foundations of network structure/dynamic behavior and its application to many fields.

Examples of Topological Characteristics

- Degree
- Path Length
- Clustering Coefficient





| Dif. Network              | SMW  | Regular N |
|---------------------------|------|-----------|
| Average<br>Degree         | 3.6  | 4         |
| Average<br>Path Length    | 6.16 | 0.5       |
| Clustering<br>Coefficient | 0.41 | 0.5       |

( A study on Topological Characteristic of Wireless Sensor Network Based on Complex Network, Ren Yueqing, Xu Lixin- 2010- Measure Comparison of Different Network )



#### Background: Extra Characteristics

- There are many other topological characteristics
  - Entropy
  - Diameter
  - Coverage
  - Connectivity
  - Biconnectivity
- Some of them only applicable to some networks

Coverage

#### Motivation: Importance of Topology Characteristics



- Diameter
  - Bounds the maximum delay in message communication
- Connectivity
  - Data dissemination from one part of network to another
  - Minimum size of connected component for useful work
- Security
  - Degree
    - Higher degree means higher node connectivity
- Generate more realistic topologies for Simulations

#### Papers and Contributions



- Topological Characteristics of Random Multihop Wireless
   Network by Keqin Li
- Analysis and Evaluation of Topological and Application Characteristics of Unreliable Mobile Wireless Ad-Hoc Network by Serdar Cabuk, Nipoon Malhotra, Longbi Lin, Saurabh Bagchi, and Ness Shroff
- NPART-Node Placement Algorithm for Realistic Topologies in Wireless Network Simulation by Bratislav Milic and Miraslow Malek

### First Paper : Topological Characteristics of Random Multihop Wireless Network



#### • Related Works:

- Ramanathan and Lyold: not arbitrary general graph
- Sen and Houston: Point graphs to represent MWN
- Paper related to this paper: *Topology Control of Multihop Wireless Networks* (set the transmission power of node to satisfy certain property.)
- Not much have been done until this paper
- Contributions:
  - Analyzing of topological properties of random wireless network.
  - Can be useful for real application
    - For example: Connectedness , Diameter for power efficiency

### Analysis



- What is different in Wireless?
  - Random network in wireless is different than normal random networks
  - Connectivity : Depending on locations and distance among the nodes
- Topology Characteristics which are studied:
  - Degree, connectivity, diameter, bandwidth ( cutset, partition ) and biconnectivity ( fault tolerance, two disjoint path )
  - Link probability:
    - Needed for finding above characteristics

#### Link Probability





Interested field, 1 unit

































### Case 2: The area of circle under AB segment

$$4(1-2r)\left(\pi-\frac{2}{3}\right)r^3.$$





UTSA



Case 3: The area of circle intersection with squares

$$\left(3\pi-\frac{5}{3}\right)r^4.$$

The link probability of vi has a link to vj

 $p_r = \pi r^2 - \frac{8}{3}r^3 + \left(\frac{11}{3} - \pi\right)r^4,$ 

Figure 3. A circle at a corner of a square.

# Effect of Link to Characteristics



• Expected Degree of nodes:

$$(n-1)\left(\pi r^2 - \frac{8}{3}r^3 + \left(\frac{11}{3} - \pi\right)r^4\right).$$

|     |       |       | r     |       |        |        |
|-----|-------|-------|-------|-------|--------|--------|
| п   | 0.25  | 0.30  | 0.35  | 0.40  | 0.45   | 0.50   |
| 25  | 3.76  | 5.16  | 6.68  | 8.29  | 9.95   | 11.64  |
| 36  | 5.49  | 7.52  | 9.74  | 12.09 | 14.51  | 16.97  |
| 49  | 7.52  | 10.32 | 13.36 | 16.58 | 19.91  | 23.27  |
| 64  | 9.87  | 13.54 | 17.54 | 21.76 | 26.13  | 30.55  |
| 81  | 12.54 | 17.20 | 22.27 | 27.63 | 33.18  | 38.79  |
| 100 | 15.52 | 21.28 | 27.56 | 34.20 | 41.06  | 48.00  |
| 121 | 18.81 | 25.80 | 33.41 | 41.45 | 49.76  | 58.19  |
| 144 | 22.41 | 30.74 | 39.81 | 49.40 | 59.30  | 69.34  |
| 169 | 26.33 | 36.12 | 46.77 | 58.03 | 69.67  | 81.46  |
| 196 | 30.56 | 41.92 | 54.29 | 67.36 | 80.87  | 94.55  |
| 225 | 35.11 | 48.16 | 62.36 | 77.38 | 92.89  | 108.61 |
| 256 | 39.97 | 54.82 | 70.99 | 88.08 | 105.75 | 123.64 |

|  | Expected | node | degree | (n – | 1) | $p_r$ |
|--|----------|------|--------|------|----|-------|
|--|----------|------|--------|------|----|-------|



• Connectivity(after 1000 simulated networks for each r and n values):

| n   | 0.25  | 0.30  | 0.35  | 0.40  | 0.45  | 0.5  |
|-----|-------|-------|-------|-------|-------|------|
| 25  | 0.111 | 0.536 | 0.826 | 0.950 | 0.987 | 0.99 |
| 36  | 0.464 | 0.861 | 0.977 | 0.993 | 0.998 | 1.0  |
| 49  | 0.797 | 0.969 | 0.992 | 1.000 | 1.000 | 1.0  |
| 64  | 0.947 | 0.996 | 1.000 | 1.000 | 1.000 | 1.0  |
| 81  | 0.980 | 0.998 | 1.000 | 1.000 | 1.000 | 1.0  |
| 100 | 0.995 | 0.999 | 1.000 | 1.000 | 1.000 | 1.0  |
| 121 | 0.998 | 1.000 | 1.000 | 1.000 | 1.000 | 1.0  |
| 144 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.0  |
| 169 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.0  |
| 196 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.0  |
| 225 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.0  |
| 256 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.0  |

Table 3

n



Diameter:













| Diameter Prob.                   | Table 4<br>Diameters of random multihop wireless networks. (99% confidence inter of $\pm 3.734\%$ ). |       |       |       |       |       |       |
|----------------------------------|------------------------------------------------------------------------------------------------------|-------|-------|-------|-------|-------|-------|
|                                  | n                                                                                                    | 0.25  | 0.30  | 0.35  | 0.40  | 0.45  | 0.50  |
| $\sqrt{2}$                       | 25                                                                                                   | 8.597 | 6.712 | 5.253 | 4.302 | 3.656 | 3.183 |
| d(n, r) =                        | 36                                                                                                   | 8.505 | 6.157 | 4.921 | 4.106 | 3.606 | 3.101 |
| r                                | 49                                                                                                   | 7.695 | 5.772 | 4.734 | 4.042 | 3.584 | 3.063 |
|                                  | 64                                                                                                   | 7.106 | 5.558 | 4.697 | 4.010 | 3.588 | 3.034 |
| 1 1                              | 81                                                                                                   | 6.827 | 5.434 | 4.638 | 4.009 | 3.618 | 3.022 |
| approaches 1 as $n \to \infty$ . | 100                                                                                                  | 6.673 | 5.338 | 4.605 | 4.000 | 3.652 | 3.007 |
|                                  | 121                                                                                                  | 6.558 | 5.273 | 4.579 | 4.000 | 3.652 | 3.005 |
|                                  | 144                                                                                                  | 6.465 | 5.184 | 4.571 | 4.000 | 3.681 | 3.002 |
|                                  | 169                                                                                                  | 6.375 | 5.147 | 4.541 | 4.000 | 3.683 | 3.001 |
|                                  | 196                                                                                                  | 6.293 | 5.092 | 4.532 | 4.000 | 3.728 | 3.002 |
|                                  | 225                                                                                                  | 6.230 | 5.064 | 4.516 | 4.000 | 3.740 | 3.001 |
|                                  | 256                                                                                                  | 6.157 | 5.038 | 4.497 | 4.000 | 3.780 | 3.000 |
|                                  | $\infty$                                                                                             | 6.000 | 5.000 | 5.000 | 4.000 | 4.000 | 3.000 |





Figure 7. Links that are in cutset  $C_h$ .

#### Conclusion of First Paper



- Useful implication in real applications
  - Power save
  - Performance
- Critics about this paper
  - Why Unit Square, it can be rectangle:

#### Conclusion of First Paper



- Useful implication in real applications
  - Power save
  - Performance
- Critics about this paper
  - Why Unit Square, it can be rectangle, paper can be improvable





Second Paper : Analysis and Evaluation of Topological and Application Characteristics of Unreliable Mobile Wireless Ad-Hoc Network

#### Second Paper



- Related Works:
  - There have been studies which have looked only one or two parameters in static environment.
  - Random node placement
  - Stationary node failures
- Contributions:
  - Analyzing connectivity and coverage in mobile ad-hoc network with transient and permanent failure.
  - Goal directed algorithms (Mean shift Clustering -MSC, and Shift Neighbors Away - SNA)
  - Desired Network based on characteristics/ satisfies some of them together

#### Second Paper





• Connectivity :

max. part covered/ total area

- Diameter: 4
- Coverage:
- total disk cov./ total area
- Degree : 5



#### **Coverage Computation Simplification**

- Disk coverage computation is overhead
- By Converting square which gives lower bound on coverage







- A node covers  $\sqrt{2R}$
- Cell (i,j) is covered by any adjacent 8 cells
- Coverage can be computed as number of covered cell/ total number of cell

### System Models



- Sensor Network
- Each node has a sensing range separate from transmission range
- Moving any direction in two dimensional grid

### Mobility Algorithm: Mean Shift Clustering Algorithm

- Decreasing diameter
- Move node to the center of neighbors
- K or less neighbors are used for process
- Coverage can be significantly small
- Used a Local Evaluation Function (LEF) for coverage
- LEF = w1.sum of distance from k neighborsw2.distance from center
- w1 and w2 can be adjusted depending on property



### Mobility Algorithm: Shift Neighbors Away Algorithm



- Increasing Coverage
- Pushing neighbors left to right or top to bottom
- Global Evaluation function for roll back



### Mobility Algorithm: Global Evaluation Function



- It is needed for whether roll back is required
- GEF =w1.connectivity + w2.covereage w3.diameter
- GEF positive: accept otherwise: roll back
- Roll back just artificial because the nodes perform evaluation before movement.
- General state cannot be know therefore to detect it, find it approximately, the portion of sensor network should be used

### Mobility Algorithm: Find Distance and Node Position

- anchor nodes
- Deducing location of all nodes
- Triangulation





#### Mobility Algorithm: Location Determination



- Hop-Terrain and Refinement (Savarece and Rabaey)
  - How many nodes away from *anchors*
  - Use this knowledge to determine positions



#### 41

Mobility Algorithm: Analysis of Coverage and Connectivity and Result

- Mapping mobility to stationary unreliable grid
  - Impact of mobility
  - Impact of Unreliability
- Result
  - No significant difference between stationary case and Mobility (Constant factor)
  - Engineering Heuristics to ensure connectivity and coverage





#### Experiments: Without Failures





### **Experiments: With Failures**



### **Conclusion of Second Paper**



- Effect of Node failure to Characteristic of Network
- Proposing algorithm for node placement more wisely

- Future Work can be about this paper.
  - Obstacles
  - Energy efficiency of this algorithm
  - Heterogeneous sensors



#### Third Paper: NPART-Node Placement Algorithm for Realistic Topologies in Wireless Network Simulation

#### **Third Paper**



- Related Works:
  - Node placement algorithm in homogeneous nodes
  - Bettestter (Uniform and Thinning), Lui and Haenggi introduce some node placement algorithm,
  - Onat and Stajmenovij, new idea (connected high probability with degree (options)

|            | Average | Average | #Biconnected | Network  | Articulation |
|------------|---------|---------|--------------|----------|--------------|
|            | Nodes   | degree  | components   | Diameter | points       |
| Berlin     | 315     | 4.02    | 99.22        | 20.52    | 75.93        |
| Leipzig    | 586     | 4.35    | 120.1        | 23.69    | 93.32        |
| Uniform    | 400     | 5.31    | 30.6         | 37.76    | 32.46        |
| RWM        | 400     | 7.6     | 31.7         | 25.15    | 21.22        |
| 20x20 Grid | 400     | 3.8     | 1            | 38       | 0            |

 Table 1. Comparison of real and synthetic topologies.

- Contributions:
  - Observing reality and creating a network has same properties
  - Increasing realistic topologies

### Model And Aimed Simulator



• Flexible

More than one node distribution model

- Realistic
  - Input real, output network should have same properties
- Random
  - Creating, random

# NPART Algorithm



- Inputs: Number of nodes, r
- Output : Network Topology
- Algorithm:
  - Initial node placement in (x, y) position
  - Initial minx and maxx = x, and miny and maxy = y
  - X coordinate simply placed in the range of (minx-r, maxx+r), same for y, (no need to predefine geo.)
  - Metric should be added depends on network needs





(minx+r, miny+r)



(minx+r, miny+r)



(minx+r, miny+r)



3

(minx+r, miny+r)

(minx, miny)

# Metric Quality



- No universal Metric
- Real measurement from network
  - Hard (Heterogeneous , obstacles, frequency)
  - Not tolerable
  - Average degree is not enough
- Degree is not enough to generate more realistic one but it is easy, no need to deal with protocols.



• Similar to Manhattan Metric

 $\sum_{degrees}^{a} (1_{target_d-candidate_d > 0} \cdot (target_d-candidate_d) + 1_{target_d-candidate_d < 0} \cdot p \cdot (candidate_d - target_d))$ 



• Similar to Manhattan Metric

 $\sum_{degrees}^{d} (1_{target_d-candidate_d>0} \cdot (target_d-candidate_d) + 1_{target_d-candidate_d<0} \cdot p \cdot (candidate_d-target_d)))$   $\sum_{degrees}^{d} (1_{target_d-candidate_d>0} \cdot (target_d-candidate_d) \cdot w_d + 1_{target_d-candidate_d<0} \cdot p \cdot (candidate_d-target_d)))$ 



• Similar to Manhattan Metric

 $\sum_{degrees}^{a} (1_{target_d-candidate_d > 0} \cdot (target_d-candidate_d) + 1_{target_d-candidate_d < 0} \cdot p \cdot (candidate_d - target_d))$ 

 $\sum_{degrees}^{a} (1_{target_d-candidate_d > 0} \cdot (target_d-candidate_d) \cdot w_d + 1_{target_d-candidate_d < 0} \cdot p \cdot (candidate_d-target_d))$ 

$$w_d = \frac{|target_d - placed_d|}{\sum_{degrees}^{d} |target_d - placed_d|}$$



• Similar to Manhattan Metric

 $\sum_{degrees}^{a} (1_{target_d-candidate_d > 0} \cdot (target_d-candidate_d) + 1_{target_d-candidate_d < 0} \cdot p \cdot (candidate_d - target_d))$ 

 $\sum_{degrees}^{-} (1_{target_d-candidate_d > 0} \cdot (target_d-candidate_d) \cdot w_d + 1_{target_d-candidate_d < 0} \cdot p \cdot (candidate_d-target_d))$ 

$$w_{d} = \frac{|target_{d} - placed_{d}|}{\sum_{degrees}^{d} |target_{d} - placed_{d}|}$$

| Degrees                          | 1   | 2   | 3   | 4   | 5   | Distance metric | Adaptive metric |
|----------------------------------|-----|-----|-----|-----|-----|-----------------|-----------------|
| Absolute Target degree frequency | 2   | 5   | 3   | 2   | 1   | 0               | 0               |
| Absolute Placed degree frequency | 0   | 3   | 0   | 0   | 0   | 10              | 2               |
| Weights $w_d$                    | 0.2 | 0.2 | 0.3 | 0.2 | 0.1 |                 |                 |
| Candidate 1                      | 0   | 2   | 2   | 0   | 0   | 9               | 1.8             |
| Candidate 2                      | 0   | 0   | 4   | 0   | 0   | 15              | 6.9             |
| Candidate 3                      | 1   | 2   | 1   | 0   | 0   | 9               | 1.9             |

Table 2. Metric example for node candidates in Figure 2. Parameter p is set to five.

# Experimental Result:





Sample from Berlin network

NPART without retirees

NPART with 150 retirees

# Experimental Result (Continue):



- Degree distribution
  - Similar to Real Berlin and Leipzig
  - Uniform has its own distribution
- Bridge (component) and Articulation Point (Network)
  - Distribution same but it creates more point than it supposed
  - Uniform, only 1% of nodes is bridges an articulation point
- Component size after bridge removal



Can be improved by eliminating pendant links





### **Conclusion of Third Paper**

- New Simulation Model
- Realistic

- Future Work can be about this paper.
  - Increasing throughput or finding some universal metric

Future Work Can Be:



- 3D will be interesting for analyzing Topological Characteristics
- Proposing heterogeneous or Obstacle Goal Driven Algorithm

# Questions





# References



- 1. Topological Characteristics of Random Multihop Wireless Network by Keqin Li
- 2. Analysis and Evaluation of Topological and Application Characteristics of Unreliable Mobile Wireless Ad-Hoc Network by Serdar Cabuk, Nipoon Malhotra, Longbi Lin, Saurabh Bagchi, and Ness Shroff
- 3. NPART-Node Placement Algorithm for Realistic Topologies in Wireless Network Simulation by Bratislav Milic and Miraslow Malek
- 4. A study on Topological Characteristic of Wireless Sensor Network Based on Complex Network, Ren Yueqing, Xu Lixin
- 5. Robust Positioning Algorithms for Distributed Ad-Hoc Wireless Sensor Networks by Chris Savarese , Jan Rabaey
- 6. Strategies and techniques for node placement in wireless sensor networks: A survey by Mohamed Younis a, Kemal Akkaya
- 7. Network Science Theory and Application by Ted G. Lewis

# **Additional Slides:** Formulas (Second Paper) $\bar{f}(x) = \left(\frac{\theta}{\pi}\right)\pi r^2 - (r-x)\sqrt{2rx - x^2}$ $=r^{2}\cos^{-1}\left(1-\frac{x}{r}\right)-(r-x)\sqrt{2rx-x^{2}}, P_{3}=4\int_{0}^{r}\int_{0}^{r}g(x_{1},x_{2})dx_{1}dx_{2}=4\int_{0}^{r}\int_{0}^{r}\left(\frac{1}{2}(f(x_{1})-g(x_{1}))\right)dx_{1}dx_{2}=4\int_{0}^{r}\int_{0}^{r}g(x_{1},x_{2})dx_{1}dx_{2}=4\int_{0}^{r}\int_{0}^{r}g(x_{1},x_{2})dx_{1}dx_{2}=4\int_{0}^{r}\int_{0}^{r}g(x_{1},x_{2})dx_{1}dx_{2}=4\int_{0}^{r}\int_{0}^{r}g(x_{1},x_{2})dx_{1}dx_{2}=4\int_{0}^{r}\int_{0}^{r}g(x_{1},x_{2})dx_{1}dx_{2}=4\int_{0}^{r}\int_{0}^{r}g(x_{1},x_{2})dx_{1}dx_{2}=4\int_{0}^{r}\int_{0}^{r}g(x_{1},x_{2})dx_{1}dx_{2}=4\int_{0}^{r}g(x_{1},x_{2})dx_{1}dx_{2}=4\int_{0}^{r}g(x_{1},x_{2})dx_{1}dx_{2}=4\int_{0}^{r}g(x_{1},x_{2})dx_{1}dx_{2}=4\int_{0}^{r}g(x_{1},x_{2})dx_{1}dx_{2}=4\int_{0}^{r}g(x_{1},x_{2})dx_{1}dx_{2}=4\int_{0}^{r}g(x_{1},x_{2})dx_{1}dx_{2}=4\int_{0}^{r}g(x_{1},x_{2})dx_{1}dx_{2}=4\int_{0}^{r}g(x_{1},x_{2})dx_{1}dx_{2}=4\int_{0}^{r}g(x_{1},x_{2})dx_{1}dx_{2}=4\int_{0}^{r}g(x_{1},x_{2})dx_{1}dx_{2}=4\int_{0}^{r}g(x_{1},x_{2})dx_{1}dx_{2}=4\int_{0}^{r}g(x_{1},x_{2})dx_{1}dx_{2}=4\int_{0}^{r}g(x_{1},x_{2})dx_{1}dx_{2}=4\int_{0}^{r}g(x_{1},x_{2})dx_{1}dx_{2}=4\int_{0}^{r}g(x_{1},x_{2})dx_{1}dx_{2}=4\int_{0}^{r}g(x_{1},x_{2})dx_{1}dx_{2}=4\int_{0}^{r}g(x_{1},x_{2})dx_{1}dx_{2}=4\int_{0}^{r}g(x_{1},x_{2})dx_{2}dx_{2}dx_{2}=4\int_{0}^{r}g(x_{1},x_{2})dx_{2}dx_{2}dx_{2}=4\int_{0}^{r}g(x_{1},x_{2})dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx_{2}dx$ $+ f(x_2) - \frac{1}{4}\pi r^2 + (r - x_1)(r - x_2) dx_1 dx_2$ $=4\int_{0}^{r} \left(\frac{1}{2}\left(\pi - \frac{2}{3}\right)r^{3} + \frac{1}{2}rf(x_{2}) - \frac{1}{4}\pi r^{3}\right)$ $+\frac{1}{2}r^{2}(r-x_{2})dx_{2} = 4\left(\frac{1}{2}\left(\pi-\frac{2}{3}\right)r^{4}\right)$ $+\frac{1}{2}r\left(\pi-\frac{2}{3}\right)r^{3}-\frac{1}{4}\pi r^{4}+\frac{r^{2}}{2}\cdot\frac{r^{2}}{2}=\left(3\pi-\frac{5}{3}\right)r^{4}.$

### Additional Slides: Formulas (Second Paper)

$$Q_1 = 2(1-2r) \int_0^r \bar{f}(x) \, dx.$$

Since

$$\bar{f}(x) = \pi r^2 - f(x),$$



$$\begin{aligned} Q_2 &= 4 \int_0^r \int_0^r h(x_1, x_2) dx_1 dx_2 \\ &= 4 \int_0^r \int_0^r \left(\frac{1}{4}\pi r^2 - \frac{1}{2}(f(x_1) - f(x_2)) \right) \\ &- (r - x_1)(r - x_2) dx_1 dx_2 \\ &= 4 \int_0^r \left(\frac{1}{4}\pi r^3 - \frac{1}{2}\left(\pi - \frac{2}{3}\right)r^3 \right) \\ &+ \frac{1}{2}rf(x_2) - \frac{1}{2}r^2(r - x_2) dx_2 \\ &= 4 \left(\frac{1}{4}\pi r^4 - \frac{1}{2}\left(\pi - \frac{2}{3}\right)r^4 \right) \\ &+ \frac{1}{2}\left(\pi - \frac{2}{3}\right)r^4 - \frac{r^2}{2} \cdot \frac{r^2}{2} \right) \\ &= (\pi - 1)r^4. \end{aligned}$$



### Additional Slides: Experiments (Second Paper)



#### Table 1. Simulation parameters

| Parameter                          | Value                                                 |
|------------------------------------|-------------------------------------------------------|
| Sensor field dimension             | 500 m X 500 m (1 m grid)                              |
| Initial placement regions          | Two bands: (0,0) – (70,70). (430,430)<br>– (500,500). |
| Node transmission range            | 125 m                                                 |
| Mean epoch length $(T_E)$          | 200 ms                                                |
| Mean Time to Failure               | 200 ms                                                |
| Mean Time to Repair                | 20 ms                                                 |
| Permanent:Transient failures       | 10:90                                                 |
| Number of runs (N <sub>r</sub> )   | 5                                                     |
| Epoch iterations (E <sub>N</sub> ) | 40                                                    |

### Additional slides : Npart Pseudo code

```
place nodes (nodes n, comm.radius r,
candidates to evaluate in iteration retries):
  placedNodes = place first node arbitrarily at (x,y)
  minX=maxX=x
  minY=maxY=y
  repeat
    minMetric=\infty, candidateN = null
    repeat
      repeat
        x-coordinate=U(minX-r, maxX+r)
        y-coordinate=U(minY-r, maxY+r)
        create node candidateN from coordinates.
      until (candidateN \cup placedNodes is connected)
      m=apply metric on placedNodes \cup candidateN
      if(m < minMetric)
        bestCandidate = candidateN
        minMetric = m
      endif
    until(retries candidates evaluated)
    update minX, maxX, minY, maxY based on
bestCandidate location
    placedNodes = placedNodes \cup bestCandidate
  until(all n nodes placed)
```

Fig. 1. NPART pseudo code description.

# Why Do We Need?

#### Connectivity

- Data dissemination from one part of network to another
- Minimum size of connected component for useful work
- Coverage
  - Can gather data about properties of covered region
- Diameter
  - Bounds the maximum delay in message communication
  - Important for data dissemination environments with real time needs
- Degree
  - Higher degree means higher node connectivity
  - Higher node connectivity means higher resilience to node failures

#### Bisection width

- A parameter which effects communication bandwidth of network

#### Biconnectivity

- A property related to fault tolerance and network robustness

• Entropy, Average path length, Cluster Coefficient...

