Comparing Object Detection, Instance Segmentation, and Semantic Segmentation for Automated Vegetation Detection in Railroad Systems

Mingyan Liu (Iris), Van Trung Le, Hwapyeong Song, Advay Chandramouli, Husnu S. Narman, and Ammar Alzarrad
IEEE UEMCon 2025
Marshall University NSF REU Program

01Introduction

Motivation & Current Solution

Consequences of Overgrown Vegetation

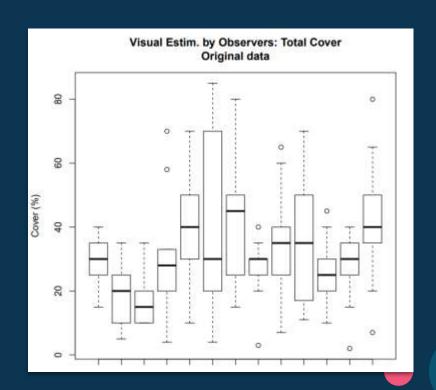
Fire Hazard

Slippery Rails

3

Track Deterioration

Current Solution


<u>Tradition methods of rail</u> <u>inspection</u>

Visual assessments conducted on site or through video footage

This is a proven flawed method

Nyberg et al. (2016)

Multiple ANOVA (Analysis of Variance) tests showed significant differences in mean rater estimates

Structural vs Organic Defects

02

Research
Objective +
Methodology

Compare modern deep learning model (YOLOv8, U-Net, DeepLabv3+) functions

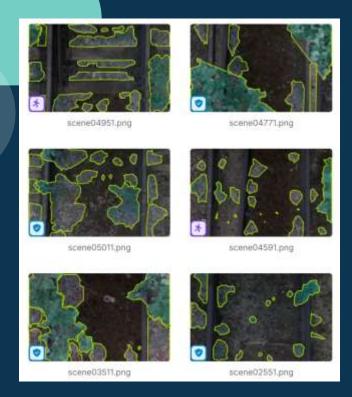
- Compare YOLO Object Detection vs Instance Segmentation methods
- Compare U-Net & DeepLabv3+ Semantic Segmentation methods

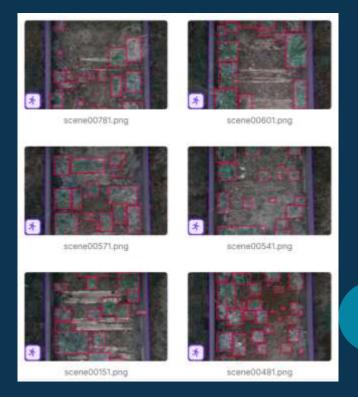
Comparing domain specific vs general dataset

500 domain-specific vegetation dataset vs 3,857 general vegetation dataset

YOLOv8: Object Detection vs. Instance Segmentation

Why YOLOv8? -> Fastest single-stage detector, with proven reliability in railroad defect real-time detection


U-Net: Semantic Segmentation


Why U-Net?-> U-shape encoder-decoder structure with skip connections preserves spatial detail during down sampling

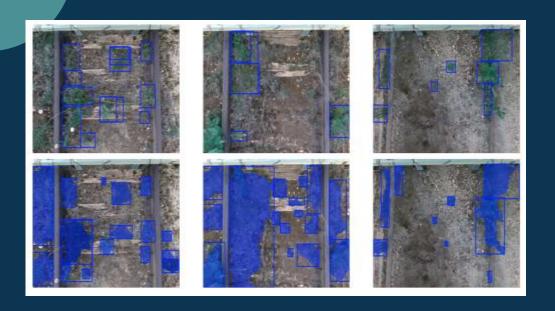
DeepLabv3+: Semantic Segmentation

Why DeepLabv3+ -> U-shape encoder-decoder structure with skip connections preserves spatial detail during down sampling

Domain-Specific Dataset

500 railroad images at 5–15 mph using Intel RealSense D435, labeled in Roboflow (object + mask annotations)

General Vegetation Dataset



On top of the original dataset, datasets forked from Roboflow was used. 9,865 total images after augmentation (rotation, noise, crop, zoom)

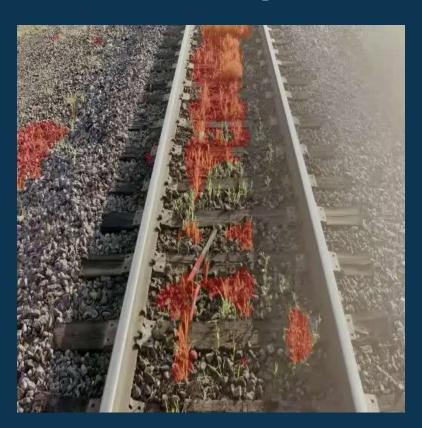
04

Results & Discussion

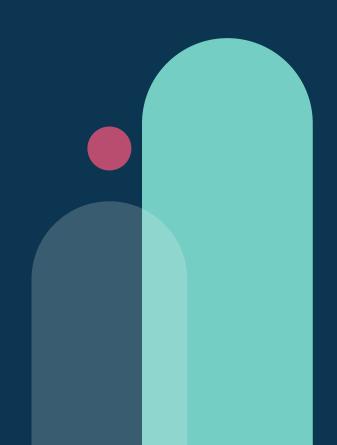
YOLOv8: Results

Metric	Object Detection	Segmentation
F1	0.69	0.72
Precision	1.00	1.00
Recall	0.88	0.86
mAP@0.5	0.68	0.73

U-net: Results


Metric	Value		
Validation F1	0.8948		
Validation Precision	0.9144		
Validation Recall	0.8760		
Validation IOU	0.8096		
Validation Loss	0.1059		

DeepLabv3+: Results



Metric	Value		
Validation F1	0.9540		
Validation Precision	0.9570		
Validation Recall	0.9510		
Validation IOU	0.9124		
Validation Loss	0.053		

Error Analysis

05 Conclusion

Summary

- DeepLabv3+ achieved the best overall metrics (F1 = 0.9540)
- YOLOv8 Segmentation performed better than object detection, but still weaker than semantic segmentation models
- Semantic segmentation is more suitable for irregular vegetation detection

YOLO Training Obstacles

Training Changes which made F-1 score decrease:

- Tuned hyparameters
 - IOU, Epochs, Learning Rate
- Data Augmentation
- Changing YOLO
 versions, weight sizes,
 types of optimizers
- Refining & Editing datasets
- Including 3-5% null images in dataset

/content/Vegetation-with-only- collected-data_SAM_Annotat ed-2-1	414 images with only field data (segmentation); no tuned parameters; normal	no tuned parameters	(mask F-1 score) 0.71	upgrade	train3
/content/Vegetation-with-only- collected-data_SAM_Annotat ed-2-1	414 images with only field data (segmentation); no tuned parameters; normal	optimizer=SGD	(mask F-1 score) 0.71		train 4
/content/Vegetation-with-only- collected-data_SAM_Annotat ed-2-1	414 images with only field data (segmentation); no tuned parameters; normal	optimizer=AdamW	(mask F-1 score) 0.72	upgrade	train5
/content/Vegetation-with-only- collected-data_SAM_Annotat ed-2-1	414 images with only field data (segmentation); no tuned parameters; normal	yolov11n-seg	(mask F-1 score) 0.72	2	train6
/content/Vegetation-with-only- collected-data_SAM_Annotat ed-2-1	414 images with only field data (segmentation); no tuned parameters; medium	yolov8 n to m (weight size)	(mask F-1 score) 0.71	downgrade	train7

Future Work Considerations

- Integrate binary railway masks for selecting ROI
- Train YOLOv8 using
 general vegetation dataset
 UNet/DeepLabv3+ using
 domain specific dataset

- Evaluating model variants

Thank You!

This research was supported by the NSF REU Program for Data Analytics at Marshall University.

Special thanks to my research mentor Dr. Husnu Narman, and program chairs Dr. Haroon Malik and Dr. Yousef Fazea.