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Introduction

2» 28.6+ million passengers

rely on railroads for transportation,
according to Amtrak passenger data
from 2023 [1]

1000+ derailments
In 2022, due to rail defects exacerbatin

track geometry and structural integrity
[2], [3]




current
Methods &
Approaches
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Traditional inspection methods
like Magnetic Flux Leakage (MFL) or

Ultrasonic Testing (UT) limited by speed
& accuracy [4-0]

Early Machine Learning (ML)

applications
using decision trees, SVMs and logistic

regression models show promise in this
domain for feature extraction [7], [8]

Latest Deep Learning (DL)

advancements
in object detection have enabled real-

time visual defect detection [9], [10]



Gap in
Scholarly
Literature
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Extensive work on CNN-based object

detectors
focusing on component-level detection

for bolts, rails and fasteners [9], [10]

Vision Transformers (ViTs) show

promise
in general object detection, but remain

underexplored in railroad defect
detection contexts [11], [12]

No studies directly benchmark
CNN-based object detectors and

Transformer-based models in this
domain



Researc/t Question

How can deep learning
based object detection
models be leveraged to
detect defective railroad
tics?




Machine
|.carning Models

Non-trivial selection, owing to the bevy of
computer vision algorithms, resulting in the
following study criterion:

e Supports real-time, multi-class detection tasks

» Effectively balances detection speed and
localization accuracy

 Suitable for lightweight deployment
environments
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You Only Look Once (YOLO)

* Single-stage CNN detector

o Partitions and processes whole image

at once, enabling real-time detection
[13]

* Outputs bounding boxes & confidence

scores; object localization handled using

Non-Maximum Suppression (NMS)

* YO
YO

[14.

_Ov11 achieves higher mAP than
_Ov8 despite 22% fewer parameters
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[13]
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Real-Time Detection Transformer
(RT-DETR)

Query Decoder
| [ \ Output
* Transformer architecture adapted for ’ Outpus
Ef ficient Hybrid| _ 5 L2 —
vision tasks, featuring hybrid MA/ il - e
backbone,
encoder/decoder pipeline - /
. . . = 10
o Minimal NMS and learned object O]
queries enables real-time detection Note: Convolutional backbone (e.q., ResNet) responsible for
115] feature map extraction before transformer processing.

» Captures both global context & fine-
grained features, adapts well with limited
or imbalanced data [12]
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YOLOVII Model Comparison
M w9

YOLO11n

YOLO11s 9.4 90 2.5

YOLO1Im 20.1 183.2 4.7

YOLO11l 25.3 238.6 6.2

YOLO11x 56.9 462.8 11.3
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o
RT-DETR Model Comparison
-_ * Notable trade-offs between model size,
Version Params (M) Speed - T4 GPU (ms)
speed, and accuracy:.

o Larger models deliver higher

RT-DETR-L 8.8

accuracy but run slower, even with
RT-DETR-X ~67 13.5 :
GPU acceleration

o Smaller models achieve faster

32.9

Note: Parameter counts for RT-DETR vary with the chosen _
backbone (e.g., ResNet-50 vs ResNet-101). Values shown here inference but at the cost of accuracy

are representative benchmarks. * Both YOLOV11-L and RT-DETR-L provide
comparable parameter counts and
satisfy this study’s selection criteria
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Mecthodology

Dataset Overview:

* Collected overhead railroad footage using a
custom-built camera rig
o Extracted 573 frames from 5 minute
contiguous video streams
 Sampled every 15th frame to ensure variance and a

distinct set of ties per image

Dataset ) Preprocessing & Annotation ) Training & Evaluation Protocol
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Data Preprocessing & Annotation

* Filtered dataset to 500 images by removing blurred, ( gl )
over/underexposed, or obstructed frames o prsani
o Padded to square dimensions while maintaining sttt — e
original 4:3 aspect ratio .

| "Wood Sleeper/Tie"

* Annotated each image for following labels, using

. o o Are defects
nested bounding boxes retained spatial context <>

between ties and defects ] a';’.itfjiiil‘l?fé; No
o Wood Ties - | deIay

o Wood Checks LN .

o Wood Decay def:cts?

o Missing Ties o

;

Are there any Submit
; No > -
more ties? annotated image




Sample Annotations
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[. Missing Ties

[I. Defective Tics

B Wood Tie
B Wood Decay ] Wood Check
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Data Augmentation

* Applied following image

Class Label Class Distribution

transformations to augment dataset:

o Contrast Stretching Wood Check
o Horizontal Flips

o +70° hue,

o +70% saturation,

Wood Decay

o +5% brightness oo S e

o Salt-and-pepper noise (0.1% pixels)
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Training & Evaluation Protocol

[. Model Training [I. Evaluation Metrics
* Training & Validation: Fixed * F1 Score
hyperparameter configuration e Precision

with 5-fold cross-validation with
80/20 train-test split

 Hardware: NVIDIA A100 GPUs
(40 GB memory, 432 tensor
cores)

e Recall

* Mean Average Precision
o IoU: 0.5 and 0.5-0.95




Results

Post-Training & Validation
Evaluations:

* Plotted box loss, classification (CLS)
loss, distribution focal loss over
epoches for both models

o Indicative of strong convergence,

minimal overfitting and effective
generalization to unseen data
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Figure A: Loss graphs from best performing YOLOv11 Fold
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Figure B: Loss graphs from best performing RT-DETR Fold
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Quantitative Evaluation

YOLOv11-Large RT-DETR-Large

0.9400 + 0.0089

0.9300 + 0.0114 YOLOV11

0.9696 + 0.0077 0.9498 + 0.0088 YOLOv11
0.9104 + 0.0147 0.9119 + 0.0152 RT-DETR
0.9530 + 0.0106 0.9321 + 0.0094 YOLOv11

0.9014 + 0.0134 0.7898 + 0.0131 YOLOv11
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Error Analysis

Confusion Matrix Normalized Confusion Matrix Normalized

Wood Check Wood Check

Wood Decay - Wood Decay -

Predicted
Predicted

-0.4

Wood Sleeper - Wood Sleeper -

-0.2 -0.2
background - 0.05 0.10 0.01 background - 0.05 0.11 0.01
. . -0.0 i 53 %l ' -0.0
g § é 3 = = § Qo
True True
Figure C: Normalized confusion matrix for best- Figure D: Normalized confusion matrix for best-
performing YOLOVvT11 fold; more balanced false performing RT-DETR fold; higher recall with inflated

positives, fewer extreme misclassifications instances of misclassifying background as defects
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Per-Class Performance

| rercase delection aeuras --
Class Label YOLOv11 RT-DETR
averaged across 5 folds:

o Both models achieve strong Wood Check 0.9 0.92
performance on Wood Ties Wood Decay - e
(~99%)

o RT-DETR performs slightly better Wood Ties 8.99 0.992

on Checks; YOLOv11 outperforms
on Decay



Model Demonstratlon
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Conclusions

* Object detection models effectively capture discrete defects and
spatial relationships between tie conditions

* High-quality, consistent data paramount to maximizing DL’s
predictive power

* While transformer models (e.g., RT-DETR) show promise, CNN-
based detectors (YOLOvV11) remain superior for real-time speed,
accuracy, and deployment
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Limitations & Future Directions

* Address dataset constraints: field test footage captured on
abandoned rail segments in West Virginia, limiting
environmental variability (lighting, weather, defect types)

* Explore segmentation-based two-stage pipelines for finer
localization

* Develop a defect severity rating system with governing bodies to
translate model outputs into actionable maintenance insights
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