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rely on railroads for transportation, 
according to Amtrak passenger data 
from 2023 [1]

28.6+ million passengers

in 2022, due to rail defects exacerbating 
track geometry and structural integrity 
[2], [3]

1000+ derailments

Introduction



Current 
Methods & 
Approaches

Traditional inspection methods
like Magnetic Flux Leakage (MFL) or 
Ultrasonic Testing (UT) limited by speed 
& accuracy [4-6]

Early Machine Learning (ML) 
applications
using decision trees, SVMs and logistic 
regression models show promise in this 
domain for feature extraction [7], [8]

Latest Deep Learning (DL) 
advancements
in object detection have enabled real-
time visual defect detection [9], [10]



Gap in 
Scholarly 
Literature 

Extensive work on CNN-based object 
detectors
focusing on component-level detection 
for bolts, rails and fasteners [9], [10]

Vision Transformers (ViTs) show 
promise 
in general object detection, but remain 
underexplored in railroad defect 
detection contexts [11], [12]

No studies directly benchmark
CNN-based object detectors and 
Transformer-based models in this 
domain



How can deep learning –
based object detection 
models be leveraged to 
detect defective railroad 
ties?

Research Question



Non-trivial selection, owing to the bevy of 
computer vision algorithms, resulting in the 
following study criterion:

• Supports real-time, multi-class detection tasks
• Effectively balances detection speed and 

localization accuracy
• Suitable for lightweight deployment 

environments

Machine 
Learning Models



You Only Look Once (YOLO)
• Single-stage CNN detector

⚬ Partitions and processes whole image 
at once, enabling real-time detection 
[13]

• Outputs bounding boxes & confidence 
scores; object localization handled using 
Non-Maximum Suppression (NMS)

• YOLOv11 achieves higher mAP than 
YOLOv8 despite 22% fewer parameters 
[14] [13]



Real -Time Detection Transformer
(RT -DETR)
• Transformer architecture adapted for 

vision tasks, featuring hybrid 
encoder/decoder pipeline
⚬ Minimal NMS and learned object 

queries enables real-time detection 
[15]

• Captures both global context & fine-
grained features, adapts well with limited 
or imbalanced data [12]

Note: Convolutional backbone (e.g., ResNet) responsible for 
feature map extraction before transformer processing.

[16]



YOLOv11 Model Comparison

Model Params (M) Speed - CPU (ms) Speed - T4 GPU (ms)

YOLO11n 2.6 56.1 1.5

YOLO11s 9.4 90 2.5

YOLO11m 20.1 183.2 4.7

YOLO11l 25.3 238.6 6.2

YOLO11x 56.9 462.8 11.3



RT -DETR Model Comparison

Version Params (M) Speed - T4 GPU (ms)

RT-DETR-L 32.9 8.8

RT-DETR-X ~67 13.5

• Notable trade-offs between model size, 
speed, and accuracy:
⚬ Larger models deliver higher 

accuracy but run slower, even with 
GPU acceleration

⚬ Smaller models achieve faster 
inference but at the cost of accuracy

• Both YOLOv11-L and RT-DETR-L provide 
comparable parameter counts and 
satisfy this study’s selection criteria

Note: Parameter counts for RT-DETR vary with the chosen 
backbone (e.g., ResNet-50 vs ResNet-101). Values shown here 
are representative benchmarks.



Methodology
Dataset Overview:
• Collected overhead railroad footage using a 

custom-built camera rig
⚬ Extracted 573 frames from 5 minute 

contiguous video streams
• Sampled every 15th frame to ensure variance and a 

distinct set of ties per image

Dataset Preprocessing & Annotation Training & Evaluation Protocol



Data Preprocessing & Annotation
• Filtered dataset to 500 images by removing blurred, 

over/underexposed, or obstructed frames
⚬ Padded to square dimensions while maintaining 

original 4:3 aspect ratio

• Annotated each image for following labels, using 
nested bounding boxes retained spatial context 
between ties and defects
⚬ Wood Ties
⚬ Wood Checks
⚬ Wood Decay 
⚬ Missing Ties



Wood Tie

Wood Decay Wood CheckMissing TiesI. Defective TiesII.

Sample Annotations



Data Augmentation
• Applied following image 

transformations to augment dataset:
⚬ Contrast Stretching
⚬ Horizontal Flips
⚬ ±10° hue, 
⚬ ±10% saturation, 
⚬ ±5% brightness
⚬ Salt-and-pepper noise (0.1% pixels)

Class Label Class Distribution

Wood Check 716

Wood Decay 1,329

Wood Ties 1,779



Training & Evaluation Protocol

Evaluation Metrics

• F1 Score
• Precision
• Recall
• Mean Average Precision

⚬ IoU: 0.5 and 0.5-0.95

II.

• Training & Validation: Fixed 
hyperparameter configuration 
with 5-fold cross-validation with 
80/20 train–test split

• Hardware: NVIDIA A100 GPUs 
(40 GB memory, 432 tensor 
cores)

Model TrainingI.



Results

Figure A: Loss graphs from best performing YOLOv11 Fold

• Plotted box loss, classification (CLS) 
loss, distribution focal loss over 
epoches for both models
⚬ Indicative of strong convergence, 

minimal overfitting and effective 
generalization to unseen data

Figure B: Loss graphs from best performing RT-DETR Fold

Post-Training & Validation 
Evaluations:



Quantitative Evaluation

Metric YOLOv11-Large RT-DETR-Large Winner

F1 Score 0.9400 ± 0.0089 0.9300 ± 0.0114 YOLOv11

Precision 0.9696 ± 0.0077 0.9498 ± 0.0088 YOLOv11

Recall 0.9104 ± 0.0147 0.9119 ± 0.0152 RT-DETR

mAP50 0.9530 ± 0.0106 0.9321 ± 0.0094 YOLOv11

mAP50-95 0.9014 ± 0.0134 0.7898 ± 0.0131 YOLOv11



Error Analysis

Figure C: Normalized confusion matrix for best-
performing YOLOv11 fold; more balanced false 
positives, fewer extreme misclassifications

Figure D: Normalized confusion matrix for best-
performing RT-DETR fold; higher recall with inflated 
instances of misclassifying background as defects



• Per-class detection accuracy 
averaged across 5 folds:
⚬ Both models achieve strong 

performance on Wood Ties 
(~99%)

⚬ RT-DETR performs slightly better 
on Checks; YOLOv11 outperforms 
on Decay

Class Label YOLOv11 RT-DETR

Wood Check 0.90 0.92

Wood Decay 0.85 0.876

Wood Ties 0.99 0.992

Per -Class Performance



Model Demonstration



Conclusions
• Object detection models effectively capture discrete defects and 

spatial relationships between tie conditions
• High-quality, consistent data paramount to maximizing DL’s 

predictive power
• While transformer models (e.g., RT-DETR) show promise, CNN-

based detectors (YOLOv11) remain superior for real-time speed, 
accuracy, and deployment



Limitations & Future Directions
• Address dataset constraints: field test footage captured on 

abandoned rail segments in West Virginia, limiting 
environmental variability (lighting, weather, defect types)

• Explore segmentation-based two-stage pipelines for finer 
localization

• Develop a defect severity rating system with governing bodies to 
translate model outputs into actionable maintenance insights
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