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Intfroduction

WHATISMALUARE?

v’ Lack of trustworthiness review methods, developers can upload
their Android apps including repackaged apps, ransomware , or
trojans to the market easily in even Google’s Android market

v" Which posed serious threats to the smart phone users, such as fﬂna(f;f;fe u’
stealing user credentials, auto-dialing premium numbers, and
sending SMS messages without user’s concern
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Objectives

1 To automate the process of malware detection

 To detect malware within short time

 To achieve high accuracy with minimum number of false positives

 To be able to detect malware from all families

1 To find out the best algorithm for predicting malware
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Brief Literature Review

Static Analysis

Relies on features Static features such as
extracted without manifest file components,
executing code API calls are used

Analysis for malware Low resource consumption,
detection is done without fast detection and low real
running the app time requirements




Dataset

Eight Features of DREBIN dataset

Class Name Number
v" We use DREBIN Dataset S1 Hardware 72
v' Contains 5560 applications from Components
179 different malware family S2 Requested 3,812
Permission
v'  Collected in the period of August
2010 to October 2012 = App contents 218,952
v’ Available to us by the Mobile >4 Filtered Intents 6379
Sandbox project. S5 Restricted API Calls 733
S6 Used Permission 70
S7 Suspicious API 315
Calls
S8 Network Address
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Methodology

— STATIC : o
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QOur Approach: Key Features

Data Cleaning : Parameter Model
Tuning Tpation

Balancing After Balancing
imbalanced l imbalanced
classes classes
divided into Parameters
. ; [[3es88 19] [[3189  25]
E,ﬁ?g:gg [ 46 18e9]] [ 34 3e87]]
data
« Balancing AIBOTILNIMS
model is
Imbalanced
Classes parameter
tuning.
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Feature Selection using RFE

'OLOGY FOR ADVAN!

Accuracy vs Feature Graph
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Significant Features

thmaod
SEND SM5

ClassLoader
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Accuracy

Number of

Model Trainingl  aeesw
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Why LightGBM?

Gradient Boosting Ensemble Algorithm

Fast, distributed, high-performance gradient boosting framework based on decision tree

algorithm

v'  Grows tree leafwise while other algorithm grows level wise.

v' Chooses the leaf with max delta loss to grow.

v' When growing the same leaf, Leaf-wise algorithm can reduce more loss than a level-wise
algorithm

£ @ & L] »
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Level-wise tree growth

Leaf-wise tree growth

Cxpininy: herw LightiiGM works How ather boasting algonthm wesks
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Parameter Tuning

Exploring a range of possibilities

v' Parameters are crucial

v Finding an optimal combination of parameters that minimizes a predefined
loss function to give better results

For Faster Speed

®bagging by setting bagging_fraction and bagging freq
efeature sub-sampling by setting feature fraction

esmall max_bin

esave_binary to speed up data loading in future learning
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Parameter Tuning

For Better Accuracy

v’ large max_bin (may be slower)
v' small learning_rate with large num_iterations
v’ large num_leaves (may cause over-fitting)

v’ bigger training data

v’ dart

Deal with Over-fitting

small max_bin

small num_leaves

min_data_in_leaf and min_sum_hessian_in_|eaf

bagging by set bagging fraction and bagging freq

feature sub-sampling by set feature_fraction

bigger training data

lambda_|1, lambda_ 12 and min_gain_to_split for regularization

max_depth to avoid growing deep tree MARSHALL
UNIVERSITY.
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Full dataset
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Evaluation Criteria & Results

Criteria Based Results COUTACY = - -
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Thank You !
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