
AN EFFICIENT ANDROID MALWARE
PREDICTION USING ENSEMBLE MACHINE

LEARNING ALGORITHMS

1

Neamat Al Sarah1

Fahmida Yasmin Rifat1

Md. Shohrab Hossain2

Husnu S. Narman3

1Department of Computer Science and Engineering, Military Institute of Science and Technology,
Mirpur, Dhaka, Bangladesh.
2Department of Computer Science and Engineering, Bangladesh University of Engineering and
Technology, Bangladesh.
3Weisberg Division of Computer Science, Marshall University, Huntington, WV, USA.

Presentation Outline

Introduction

Literature
Review

Objectives

Dataset

Results

DiscussionEvaluation

Methodology

2

Introduction

Android
Malware

 Lack of trustworthiness review methods, developers can upload
their Android apps including repackaged apps, ransomware , or
trojans to the market easily in even Google’s Android market

 Which posed serious threats to the smart phone users, such as
stealing user credentials, auto-dialing premium numbers, and
sending SMS messages without user’s concern

Objectives

❑ To automate the process of malware detection

4

❑ To achieve high accuracy with minimum number of false positives

❑ To be able to detect malware from all families

❑ To detect malware within short time

❑ To find out the best algorithm for predicting malware

Brief Literature Review

5

Static Analysis

Static features such as
manifest file components,

API calls are used

Analysis for malware
detection is done without

running the app

Relies on features
extracted without

executing code

Low resource consumption,
fast detection and low real

time requirements

Dataset

 We use DREBIN Dataset

 Contains 5560 applications from
179 different malware family

 Collected in the period of August
2010 to October 2012

 Available to us by the Mobile
Sandbox project.

Eight Features of DREBIN dataset

6

Class Name Number

S1 Hardware
Components

72

S2 Requested
Permission

3,812

S3 App contents 218,952

S4 Filtered Intents 6379

S5 Restricted API Calls 733

S6 Used Permission 70

S7 Suspicious API
Calls

315

S8 Network Address 310447

Methodology

7

Collecting
apks

Pre Processing

Malware

Benign

Dataset

Our Approach: Key Features

8

Data Cleaning Feature
Selection

Model
Selection&

Training

Parameter
Tuning

Model
Evaluation

• Handling
Missing
data

• Balancing
Imbalanced
Classes

• RFE
• RFECV

Algorithms
used here are
divided into

three classes:
• Traditional

machine
learning
Algorithms

• Ensemble
algorithms

• Deep
Learning

Parameters
which define

the model
architecture.
The searching

for ideal
model is

parameter
tuning.

• Train-Test
Split

• Cross
Validation

Before
Balancing

imbalanced
classes

After Balancing
imbalanced

classes

Feature Selection using RFE

9

Significant Features

10

Model Training

11

Traditional ML Algorithms:
• Support Vector

Machine(SVM)
• Logistic Regression
• Gaussian Naïve Bayes
• Decision Tree

Ensemble ML Algorithms:
• Random Forest
• Gradient Boosting
• Light GBM
• XGBoost

Algorithm Used
Highest Still Highest

Number of
features=250

Number of
features=100

 Gradient Boosting Ensemble Algorithm

 Fast, distributed, high-performance gradient boosting framework based on decision tree
algorithm

 Grows tree leafwise while other algorithm grows level wise.

 Chooses the leaf with max delta loss to grow.

 When growing the same leaf, Leaf-wise algorithm can reduce more loss than a level-wise
algorithm

12

Why LightGBM?

 Exploring a range of possibilities
 Parameters are crucial
 Finding an optimal combination of parameters that minimizes a predefined

loss function to give better results

13

Parameter Tuning

For Faster Speed
•bagging by setting bagging_fraction and bagging_freq
•feature sub-sampling by setting feature_fraction
•small max_bin
•save_binary to speed up data loading in future learning

14

Parameter Tuning
For Better Accuracy
 large max_bin (may be slower)
 small learning_rate with large num_iterations
 large num_leaves (may cause over-fitting)
 bigger training data
 dart

Deal with Over-fitting
 small max_bin
 small num_leaves
 min_data_in_leaf and min_sum_hessian_in_leaf
 bagging by set bagging_fraction and bagging_freq
 feature sub-sampling by set feature_fraction
 bigger training data
 lambda_l1, lambda_l2 and min_gain_to_split for regularization
 max_depth to avoid growing deep tree

Testing

15

Train Test Split

K-Fold Cross
Validation

Only one
Split is
done
here

K splits .At
each split

K-1 training
sets and 1
test set is
created.

Evaluation Criteria & Results

Accuracy

Recall

sdf
F1 Score :

1. Accuracy:

sdf

2. Recall:

3. F1 Score

Criteria Based Results

4. No. of false positive slices = False Detection
5. No. of false negative slices = Failed Detection

0.9924
0.991

0.9937

Confusion Matrix ROC

17

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	 Dataset
	 Methodology
	Slide Number 8
	Feature Selection using RFE
	Slide Number 10
	Model Training
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Testing
	Slide Number 16
	Slide Number 17

