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Introduction

Android 
Malware 

 Lack of trustworthiness review methods, developers can upload 
their Android apps including repackaged apps, ransomware , or 
trojans to the market easily in even Google’s Android market

 Which posed serious threats to the smart phone users, such as 
stealing user credentials, auto-dialing premium numbers, and 
sending SMS messages without user’s concern



Objectives

❑ To automate the process of malware detection
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❑ To achieve high accuracy with minimum number of false positives

❑ To be able to detect malware from all families

❑ To detect malware within short time

❑ To find out the best algorithm for predicting malware



Brief Literature Review
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Static Analysis

Static features such as 
manifest file components, 

API calls are used

Analysis for malware 
detection is done without 

running the app

Relies on features 
extracted without 

executing code

Low resource consumption, 
fast detection and low real 

time requirements



Dataset

 We use DREBIN Dataset

 Contains 5560 applications from 
179 different malware family

 Collected in the period of August 
2010 to October 2012

 Available to us by the Mobile 
Sandbox project.

Eight Features of DREBIN dataset
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Class Name Number

S1 Hardware 
Components

72

S2 Requested 
Permission

3,812

S3 App contents 218,952

S4 Filtered Intents 6379

S5 Restricted API Calls 733

S6 Used Permission 70

S7 Suspicious API 
Calls

315

S8 Network Address 310447



Methodology
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Collecting 
apks

Pre Processing 

Malware

Benign

Dataset



Our Approach: Key Features 
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Data Cleaning Feature 
Selection

Model 
Selection& 

Training

Parameter 
Tuning

Model 
Evaluation

• Handling 
Missing 
data

• Balancing 
Imbalanced 
Classes

• RFE
• RFECV

Algorithms 
used here are 
divided into 

three classes:
• Traditional

machine
learning
Algorithms

• Ensemble
algorithms

• Deep
Learning

Parameters 
which define 

the model 
architecture. 
The searching 

for ideal 
model is 

parameter 
tuning.

• Train-Test 
Split

• Cross 
Validation

Before 
Balancing 

imbalanced 
classes

After Balancing 
imbalanced 

classes



Feature Selection using RFE
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Significant Features 
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Model Training
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Traditional ML Algorithms:
• Support Vector 

Machine(SVM)
• Logistic Regression
• Gaussian Naïve Bayes
• Decision Tree

Ensemble ML Algorithms:
• Random Forest
• Gradient Boosting
• Light GBM
• XGBoost

Algorithm Used
Highest Still Highest

Number of 
features=250

Number of 
features=100



 Gradient Boosting Ensemble Algorithm

 Fast, distributed, high-performance gradient boosting framework based on decision tree 
algorithm

 Grows tree leafwise while other algorithm grows level wise.

 Chooses the leaf with max delta loss to grow. 

 When growing the same leaf, Leaf-wise algorithm can reduce more loss than a level-wise 
algorithm
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Why LightGBM?



 Exploring a range of possibilities
 Parameters are crucial 
 Finding an optimal combination of parameters that minimizes a predefined 

loss function to give better results
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Parameter Tuning

For Faster Speed
•bagging by setting bagging_fraction and bagging_freq
•feature sub-sampling by setting feature_fraction
•small max_bin
•save_binary to speed up data loading in future learning
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Parameter Tuning
For Better Accuracy 
 large max_bin (may be slower) 
 small learning_rate with large num_iterations
 large num_leaves (may cause over-fitting) 
 bigger training data 
 dart

Deal with Over-fitting 
 small max_bin
 small num_leaves
 min_data_in_leaf and min_sum_hessian_in_leaf
 bagging by set bagging_fraction and bagging_freq
 feature sub-sampling by set feature_fraction
 bigger training data 
 lambda_l1, lambda_l2 and min_gain_to_split for regularization 
 max_depth to avoid growing deep tree 



Testing
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Train Test Split

K-Fold Cross 
Validation

Only one 
Split is 
done 
here

K splits .At 
each split 

K-1 training 
sets and 1 
test set is 
created.



Evaluation Criteria & Results

Accuracy

Recall

sdf
F1 Score :

1. Accuracy:

sdf

2. Recall:

3. F1 Score

Criteria Based Results

4. No. of false positive slices = False Detection
5. No. of false negative slices = Failed Detection

0.9924
0.991

0.9937

Confusion Matrix ROC
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