AN ENERGY EFFICIENT GRAVITATIONAL MODEL FOR TREE BASED ROUTING IN WIRELESS SENSOR NETWORKS

Presented By

Md.Mahbubur Rahman Md. Shohrab Hossain Mohammad Mahfuzul Islam Husnu S. Narman

1

• • • Outline

- Wireless Sensor Networks
- Overview of Routing Protocols
- Related Works
- Proposed Tree Clustering Approach
- Results & Analysis
- Conclusion and Future works

Figure 1: WSNs Architecture

Applications

- Area monitoring
- Environmental monitoring
 - Air pollution monitoring
 - Forest fires detection
 - Greenhouse monitoring
 - Landslide detection
- Industrial monitoring
 - Machine health monitoring
- Water/wastewater monitoring
- Smart Agriculture

Source: http://slideplayer.com

Wireless Sensor Network (WSN)

Challenges in WSN

- Energy Efficiency
- Scalability
- Throughput
- Delay
- Data Aggregation
- Security
- Coverage

Key factors for energy wastage

- \circ Collision
- o Overhearing
- Retransmission
- o Idle listening

How to reduce energy consumption Two Way Idle Phase (Use of sleeping Mode)

6

Category the Routing Protocols of WSN categories the routing protocols of WSN Routing Protocol of WSN **Network Structure** Communication **Topology Based Reliable Routing** Sink **Hierarchical Routing** Flat Routing Cluster Chain Tree Atypical Grid Area

Related Works:

- □ An Application-Specific Protocol Architecture for WSN (Heinzelman et.al,2002)
- Tree structure based data gathering for maximum lifetime in wireless sensor networks (Q. Zhang et. Al, 2005)
- □. A delay-constrain and maximum lifetime data gathering algorithm for wireless sensor networks (J.Liang et.al, 2009)
- □ An Efficient Tree-Based Power Saving Scheme for WSN With Mobile Sink(Chang et.al,2016)

Efficient Tree-Based Power Saving Scheme for WSN With Mobile Sink(TRMS)

Efficient Tree-Based Power Saving Scheme for WSN With Mobile Sink(TRMS)

Node ID	Dist ânctæ¢ d) Distance (d)
1	155
2	256
36	1 6 8
144	3210
5	2244
Ø	1285
15	29
7	34
4	31
8	36
17	32
9	42
7	34
10 16	47 35
11	⁶⁴ 36
1 <u>2</u>	5 ₄ 62
13	⁵ ⁸ 7
11-22	2\$6
13	2598
1ð	3654
17 12/	^{2/2021} 32

Efficient Tree-Based Power Saving Scheme for WSN With Mobile Sink(TRMS)

Efficient Tree-Based Power Saving Scheme for WSN With Mobile Sink(TRMS)

2. Though CH is selected based on average energy but there have a chance to become a low energy

4. GPS for all node is energy consuming.

node.

node to CH.

Problems in selection

□ Considering lower energy intermediate node can survive for the round or not

□ Most of the time low energy intermediate nodes die out within the round

Critics

1. Criteria for selecting intermediate nodes is only distance from Sink so low energy node can

have a great chance to become intermediate

Die out of intermediate nodes causes:

- Packet Loss
- Possibility of disconnect
- □ Reduce Network Lifetime

Solution:

Tree structure can be rebuild by avoiding low energy node as for intermediate node.

Residual energy and distance both can be considered for build tree structure.

□ Distance can be measure from RSSI

Motivation

✤ Lifetime of a node inversely propositional to its node-degree and distance.

- ✤ Lower-energy far node's can be avoid for being intermediate node.
- To construct a load balancing tree, higher energy nearby nodes should handle more traffic than the lower one by being intermediate node.

• Assumptions

Nodes use for different purpose

- Network is heterogeneous
- Nodes are randomly deployed
- Node can control its transmission power

Phases:

- 1. Setup Phase \rightarrow Network Formation
- 2. Steady State Phase → Network Operation

Setup Phase: Cluster formation and Cluster Head selection

Setup Phase: Cluster formation and Cluster Head selection

Setup Phase: Cluster formation and Cluster Head selection

else Make 7 as a CH 25

12/2/2021

γ

Setup Phase: Cluster formation and Cluster Head selection

Setup Phase: Cluster formation and Cluster Head selection

Connect(11,14) else Make 11 as a CH 29

12/2/2021

γ

 $\theta = \cos^{-1}$

Setup Phase: Cluster formation and Cluster Head selection

Connect(12,11) else Make 12 as a CH 30

12/2/2021

γ

 $\theta = \cos^{-1}$

Setup Phase: Cluster formation and Cluster Head selection

Setup Phase: Cluster formation and Cluster Head selection

else Make 14 as a CH

12/2/2021

γ

Setup Phase: Cluster formation and Cluster Head selection

else Make 15 as a CH

12/2/2021

γ

Final Network Structure

Steady State Phase : Transmission of Data

Result & Analysis

• Radio Model

• Simulation Environment

Result & Analysis

Simulation Parameters

Parameter	Value
	50 nJ/bit
Energy for GPS receiver E_{GPS})	20 nJ/bit/signal
Energy for data aggregation (E_{CA})	5 nJ/bit/signal
Initial energy of node(E_{init})	0.5 J(+/-)
Communication energy (\mathcal{E}_{fs})	10 pJ/bit/
Communication energy (\mathcal{E}_{mp})	0.0013 pJ/bit/
Threshold value of distance (d_0)	87 m
Packet Size	512 bytes
Sensing area $(m \times m)$	200×200
36 Number of Nodes _(N)	50

• First Node Die, Half Node Die and Last Node Die with respect to Round

For 50 Nodes

• Remaining energy of the network with respect to Round

• 80%-90% energy consumed in around 1000 rounds in LEACH and TRMS whereas only 60% energy consumed for Proposed system

Conclusion & Future Work

• Achievements:

- Decrease the total energy lost per round
- Decrease path cost
- Removes bottlenecks of the network
- Increase the lifetime of the network

• Future Work

> To test this scheme with real world implementation

thank you!