Prediction of Dengue Infected Areas Using A Novel Blockchain Based Crowdsourcing Framework

Md Shohel Khan¹ Ajoy Das¹ Md. Shohrab Hossain¹ Husnu S. Narman² ¹Department of Computer Science and Engineering, Bangladesh University of Engineering and Technology, Bangladesh. ²Weisberg Division of Computer Science, Marshall University, Huntington, WV, USA.

Presentation Outline

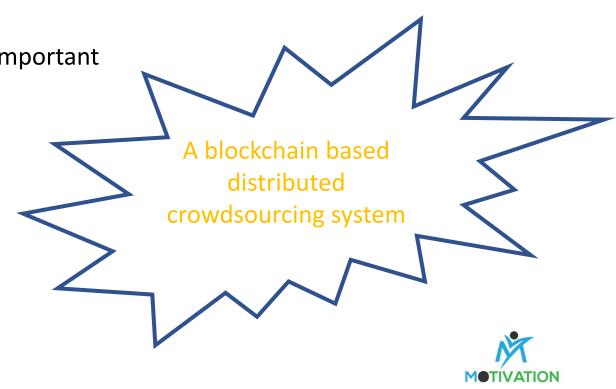
- Introduction
- Motivation
- Background and Current States of the Problem
- Objectives
- Proposed Solution
- Implementation Details
- Results
- Future Directions

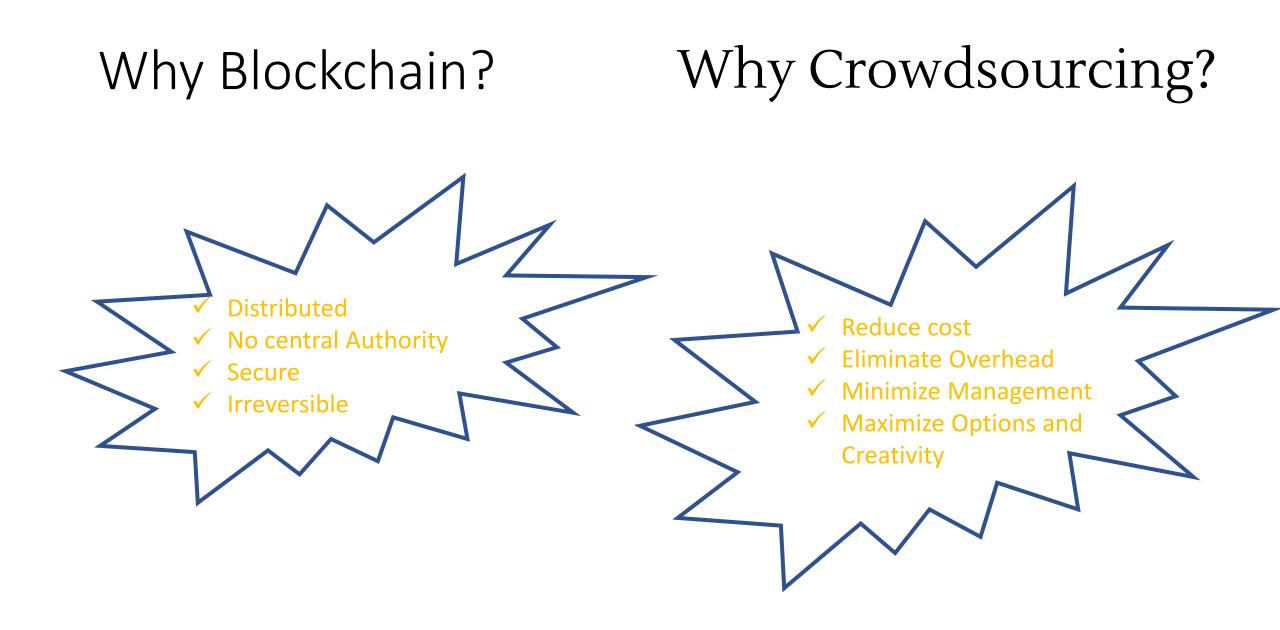
Bangladesh University of Engineering and Technology

Introduction

Dengue

- Dengue -
 - A mosquito-borne viral infection.
 - The responsible virus is Dengue virus (DENV).
- Ades Aegypti is the carrier of Dengue virus. ¹
- Worst-ever outbreak due to
 - Poor urban planning
 - Concerned organizations' mismanagement
 - Resilience of some viral strands


Motivation



	Predominant vectors by genus	Estimated or reported number of cases per annum
Malaria	Anopheles	212 million (range 148–304 million)
Dengue	Aedes	96 million (range 67–136 million)
Lymphatic filariasis	Aedes, Anopheles, and Culex	38.5 million (range 31.3–46.7 million)
Chikungunya	Aedes, Anopheles, Culex, and Mansonia	693 000 (Americas)
Zika virus	Aedes	500 000 (Americas)
Yellow fever	Aedes and Haemagogus	130 000 (range 84 000–170 000) (Africa)
Japanese encephalitis	Culex	42 500 (range 35 000–50 000
West Nile fever	Culex	2588
Data are from WHO. ^{1,2}		
Table 1: Number of cases of the major mosquito-borne diseases of global health significance per year		

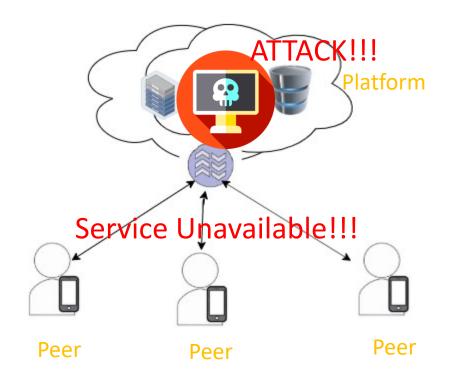
- Bangladesh has reached 98779 cases in 2019 as of 17 November 2019.¹
- No appropriate way to
 - Identify the exact spots where these mosquitoes thrive
 - Identify the exact spots unless visiting the place in person
- Identification of dengue infected location is very important
 - To reduce its spread
 - To reduce the cost of spray medicine significantly.
 - To prevent unwanted death.

Background and Current State of the Problem

Centralized Crowdsourcing Platform

• Many crowdsourcing platforms have been developed by adopting a centralized architecture.

> Upwork: Numerous projects are posted who seek to hire freelancers.


> Amazon Mechanical Turk: Same approach as Upwork.

➤ Waze Carpool: A navigation platform.

Problem with Centralized Solutions

- Single Point of Failure (SPOF) vulnerability.
 - with single point being the central authority

Elance experienced a DDoS attack in March 2014.¹ According to Bloomberg, the hackers broke into Uber's private Github account and managed to steal data in October 2016.²

^{1.} D. Meyer, "Elance and oDesk hit by major DDoS attacks, downing services for many freelancers," Gigaom Technical Report, 18-Mar-2014. [Online]. Available: https://gigaom.com/2014/03/18/elance-hit-by-major-ddos-attack-downing-service-for-many-freelancers/. [Accessed: 11-Jan-2020].

^{2.} Bloomberg.com. (2019). Bloomberg - Are you a robot?. [online] Available at: https://www.bloomberg.com/news/articles/2017-11-21/uber-concealed-cyberattack-that-exposed-57-million-people-s-data [Accessed 21 Dec. 2019].

Challenges for Decentralized Crowdsourcing Platform

- Prevent information tampering.
- Task offloading, along with handling.

Decentralized Crowdsourcing Platform

Xiaolong et al. (2019)

- A blockchain-based mobile crowdsourcing platform
- Salt down the privacy of the participants
- Keep the integrity of the service request and resources.

J. Park et al. (2018)

- A data evolution system for the efficacy of healthcare remedies.
- It is not biased by any parties or admin.

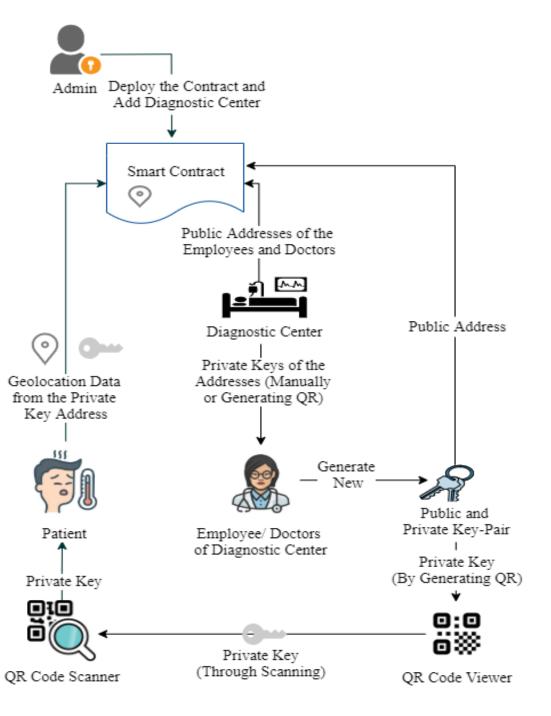
^{1.} Xu, Xiaolong, et al. "A Blockchain-Powered Crowdsourcing Method with Privacy Preservation in Mobile Environment." *IEEE Transactions on Computational Social Systems* (2019).

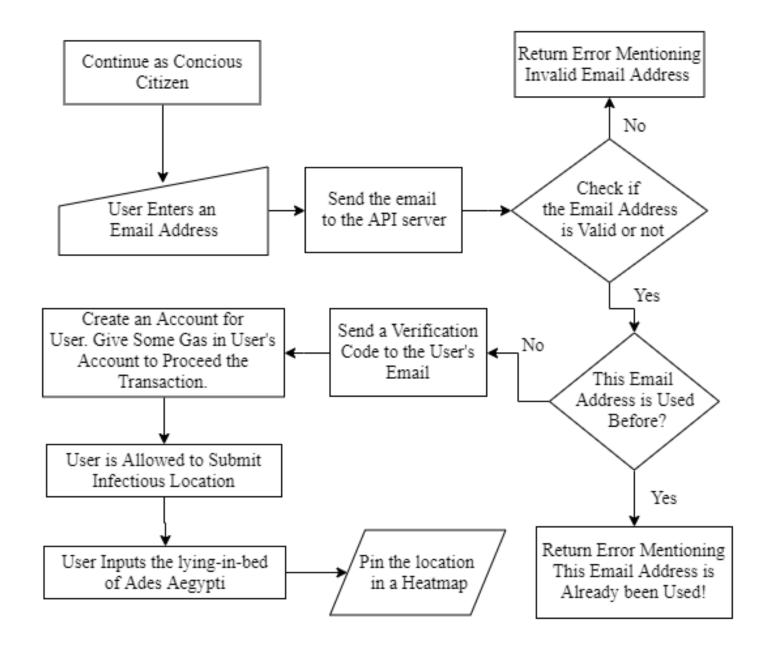
^{2.} J. Park, S. Park, K. Kim, and D. Lee, "CORUS: blockchain-based trustworthy evaluation system for efficacy of healthcare remedies," 10th IEEE International Conference on Cloud Computing Technology and Science (CloudCom), Hilton Cyprus, Nicosia, Cyprus, December 10- 13, 2018.

Objectives with Specific Aim

- Design and develop a distributed crowdsourcing system to collect the possible infectious locations.
- Deploy the system into *Ethereum-Blockchain* to make the system unbiased.
- To increase the accuracy of the system, data are collected from the infected patients and the conscious citizen.
- Two separate *heatmaps* can be generated with the data collected from *the infected patients* and *the conscious citizen*, respectively.
- To avoid fraudulent users, two separate token generation methods are used in the proposed system.

Proposed Solution




Stakeholders of the System

- Admin
- Diagnostic Centers
- Doctors and Employees
- Patients
- Conscious Citizen

System Model for Patient

System Model Conscious Citizen

Implementation

Sub-Systems

- An Android application for users
- A website for displaying the heatmaps
- A webserver to validate email addresses provided by conscious citizens

The Backbone

Smart Contracts

Functions of smart contracts

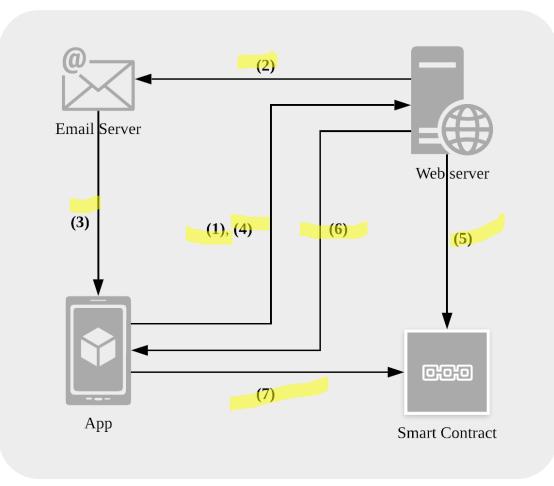
- Add diagnostic center
- Add employees and doctors
- A function to generate login credentials
- A function to submit location data
- A function to generate heatmap

Algorithms for Patient's Data Submission

Algorithm 1 Add a patient by an employeeRequire: Exisiting Diagnostic Center id and Employee idRequire: Patient's Address that will be addedEnsure: A new patient is added to the Patient'sListreturn error if Diagnostic Center is invalidreturn error if Employee is invalidreturn error if Employee is invalidreturn error if Employee is invalidreturn error if Address

 $\begin{array}{l} patient \leftarrow new \; Employee()\\ patient.address \leftarrow Patient's \; Address\\ patient.enable \leftarrow true\\ patient.createdAT \leftarrow now\\ \textbf{store} \; patient \; \textbf{to the} \; Patient'sList\\ totalPatientCount + + \end{array}$

transfer WeiToSendUser amount of Wei to patient's address **emit** PatientAddEvent event with PatientAddress and

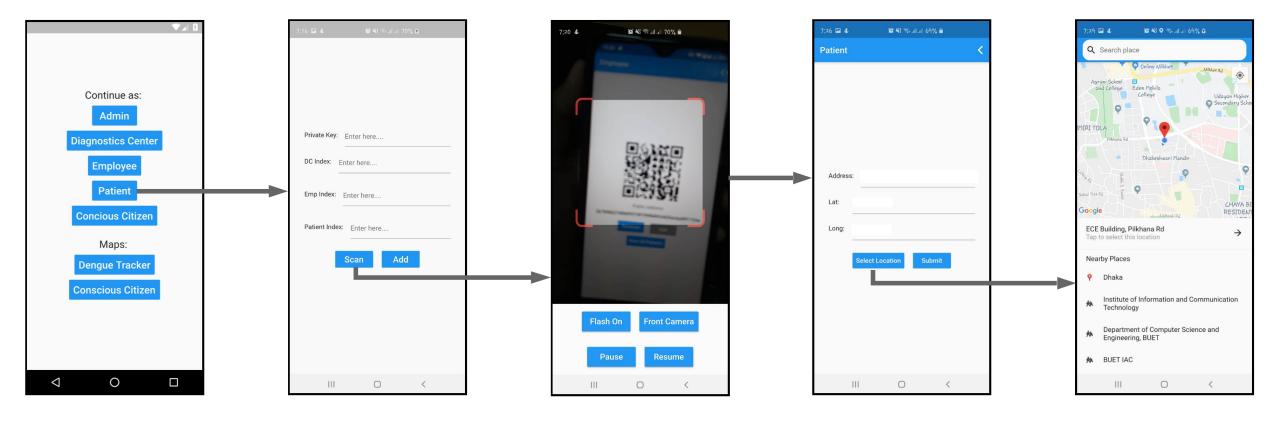

Index at which patient is added as data

Algorithm 2 Submit location data by a patientRequire: Exisitng Diagnostic Center id and Employee idRequire: Patient's Location DataEnsure: Patient's Location Data will be storedreturn error if Diagnostic Center is invalidreturn error if Employee is invalidreturn error if Patient is invalidreturn error if Patient is invalidreturn error if Patient is invalidreturn error if Patient's Address \neq Message Sender's Address

 $patient \leftarrow getPatientFromStorage()$ $patient.location \leftarrow Submitted \ Location$ $patient.coordinate \leftarrow Submitted \ Coordinate$ $patient.submittedAT \leftarrow now$ **save** patient's state

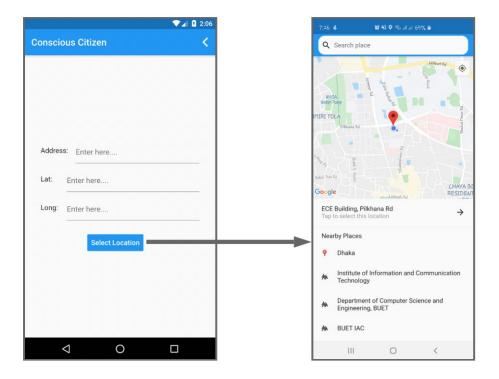
emit PatientSubmittedDataEvent event with PatientAddress and Index at which patient was loaded from as data

Conscious Citizen Data Submission

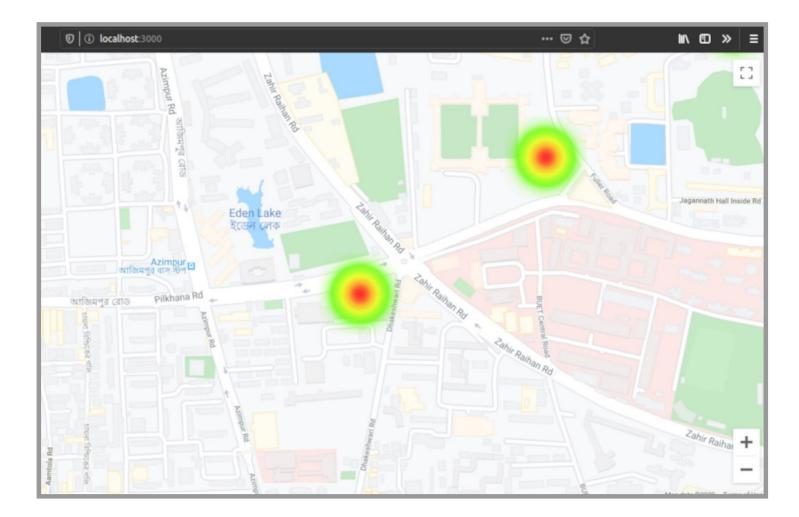


Results





Patient Selects location from Map



Conscious Citizen

Sample Heatmap Based on the Input of Conscious Citizen

Future Directions

Future Directions

- We have implemented the PoC(Proof of Concept) of the Dengue Tracker system using public blockchain network. Try to design and implement the solution using private blockchain.
- Implement and expand the system for a different use cases like other COVID 19.
- And try to implement the system by using On-chain random number generation, and solve the problem of disclosing the generated random number to all blocks on that network.

Thank You

