

Detecting Network Intrusion through Anomalous Packet Identification

Tanjim Munir Dipon Md. Shohrab Hossain Husnu S Narman

Outlines

- Motivation
- Problem Definition
- Methodology
- Implementation
- Result
- Future Works

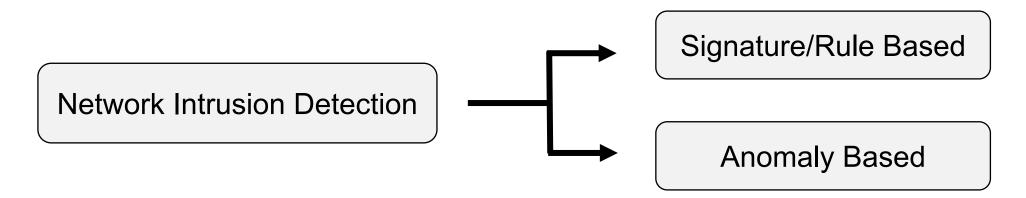
Motivation

- Increasing communication through Internet, so increased risks of network attacks.
- Using packet capture files to extract information about different network sessions.
- Detecting anomalous sessions with no prior knowledge about their behaviour.
- Mitigating the risks of network attacks.

Problem Definition

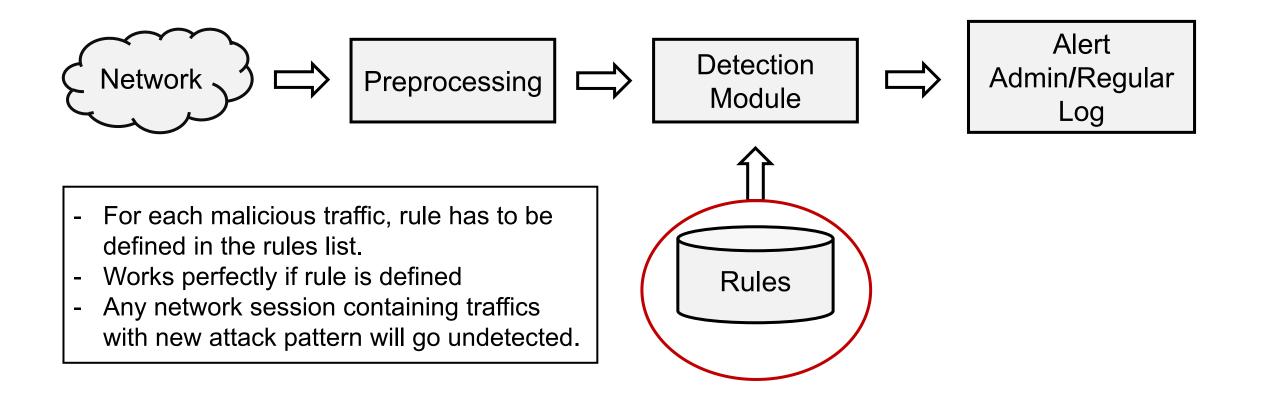
What is Network Intrusion Detection?

- Procedure of detecting malicious traffic on the network on the basis of given rules or statistics.
- Two types of detection scheme are possible;



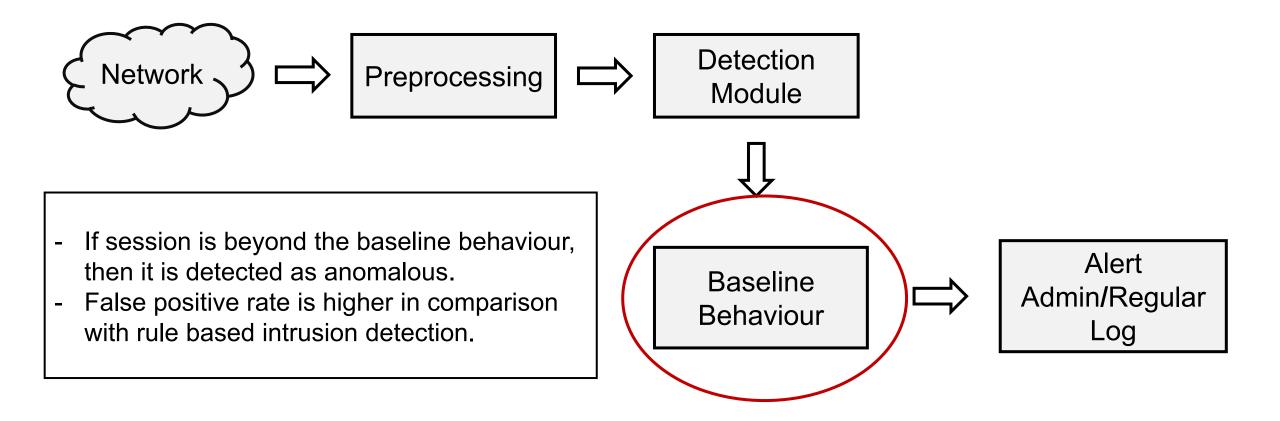
Problem Definition

Signature based Intrusion Detection



Problem Definition

Anomaly based Intrusion Detection



Methodology

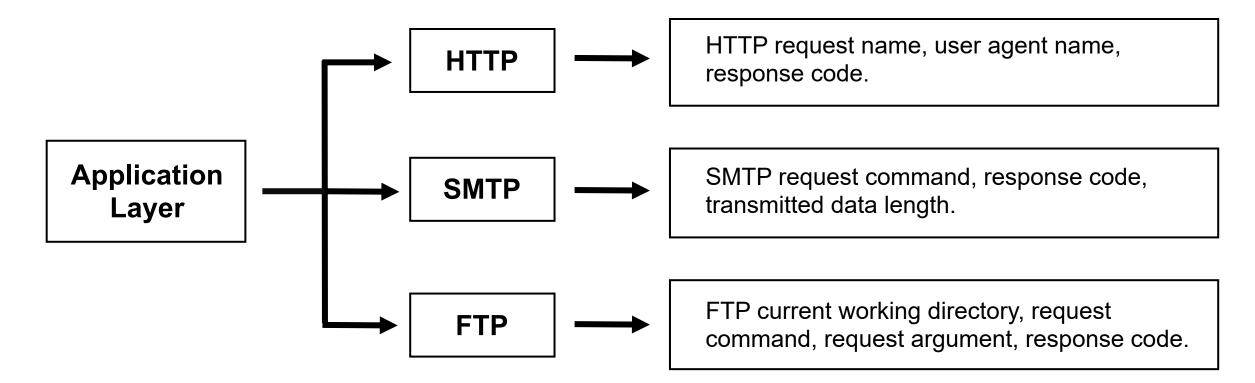
> Data extraction from different services of network traffics.

- > Reducing the dimensionality of the extracted data from network sessions.
- > Clustering the sessions in all possible **3-**dimensions.
- Identifying the anomalous sessions on the basis of their outlier count in all possible combinations.

Implementation

Data Extraction from Network Traffic

• In this module, data is extracted from different protocols of network packets and then recorded as statistics inside corresponding sessions.



Implementation

Data Extraction from Network Traffic

Transport Layer (TCP)

Source and destination port numbers

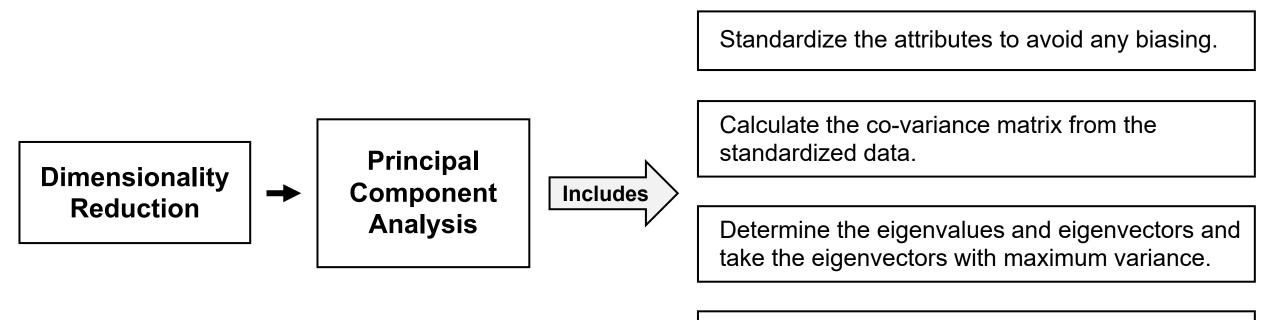
- Average TCP segment length from client to server
- Average TTL value of SYN flagged packets
- SYN, SYN-ACK, PUSH, URG, RST and FIN flag percentage
- RST and FIN flag count from client to server and server to client.

Network Layer

- Source and destination IP addresses
- Don't and More Fragment rate
- ICMP packet type
- ICMP checksum status
- Avg. data length of ICMP packets

Implementation Dimensionality Reduction

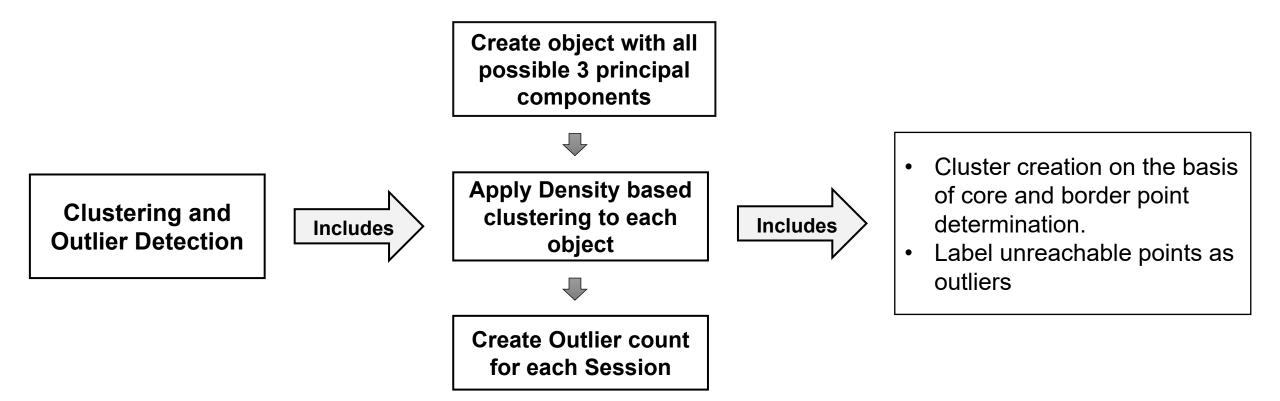
• Dimensionality reduction is applied to consider only the essential features in detecting anomalous sessions. Also any dependency in between the attributes is omitted.



Project the sessions into the eigenvectors.

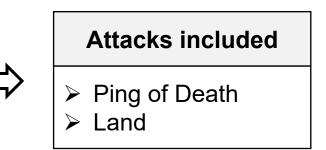
Implementation Clustering and Outlier Marking

• Clustering is applied to all of the 3 combinations of the principal components and finally sessions having the most outlier count are recorded as anomalous.

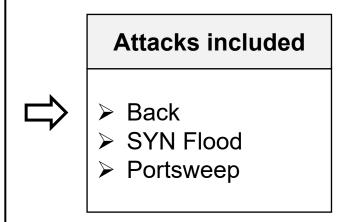


• DARPA 1999 dataset is used to evaluate the proposed model. Anomalies detected in the dataset are given according to their respective protocols.

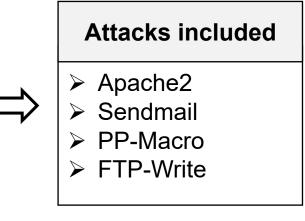
- Identical source and destination IP address.
- High amount of data transmitted through ICMP packets to the server.
- High amount of checksum errors.
- Request with no responses from the server.
- High amount of **TTL** values.

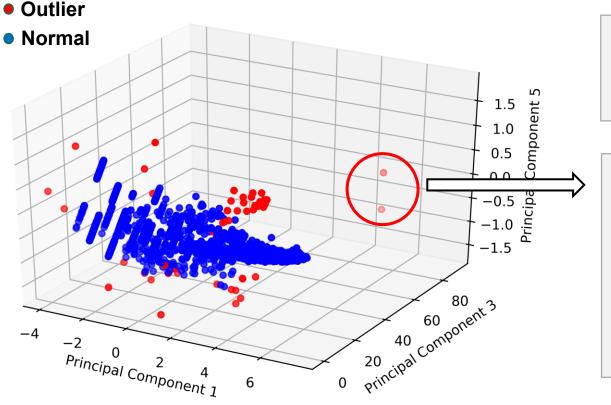


- High amount of data transmission through **TCP** bookkeeping packets.
- High amount of **RST** and **FIN** flag rate per session from server to client and client to server.
- High difference between SYN and SYN-ACK flag rate per session.
- **RST** and **FIN** flags with no **SYN** and **SYN-ACK** flags in a session.



- High amount of data transmitted as **HTTP** user agent through **TCP** bookkeeping packets.
- No **SMTP** session starting or closing command yet tried to transmit a lot of data.
- A lot amount of data transmitted in **SMTP** session with many packets full to **TCP** segment capacity.
- Trying to append a file to the **FTP** root directory with anonymous session.





HTTP Sessions as data points concerning principle components 1, 3 and 5

- All of the different clusters are shown with several bunch of blue points. These clusters show the normal **HTTP** sessions.
- Red points are recorded as outliers.
- Similar graph is achieved for all 3combinations of principal components.
- Finally sessions those appear as outlier in most of these combinations are declared as anomalous.

Future Works

- Process other services such as Telnet, UDP, SNMP, encrypted traffics for a wide range of detection.
- Use other datasets to evaluate the performance of the system in a more robust way.
- Automating the entire procedure through assigning the hyper parameter values automatically.

References

- M. A. Jonas, R. Islam, M. S. Hossain, H. S. Narman, and M. Atiquzzaman, "An intelligent system for preventing ssl stripping-based session hijacking attacks," in *IEEE Military Communications (MILCOM)*. Norfolk, VA, USA: IEEE, 12-14 Nov., 2019.
- [2] M. I. Ashiq, P. Bhowmick, M. S. Hossain, and H. S. Narman, "Domain flux based dga botnet detection using feedforward neural network," in *IEEE Military Communications (MILCOM)*. Norfolk, VA, USA: IEEE, 12-14 Nov., 2019.
- [3] P. Casas, J. Mazel, and P. Owezarski, "Unada: Unsupervised network anomaly detection using sub-space outliers ranking," in *International Conference on Research in Networking*. Berlin, Germany: Springer, May 9., 2011, pp. 40–51.
- [4] J. Dromard, G. Roudiere, and P. Owezarski, "Online and scalable unsupervised network anomaly detection method," *IEEE Transactions* on Network and Service Management, vol. 14, no. 1, pp. 34–47, 09 November., 2016.
- [5] I. Savvas, A. Chernov, M. Butakova, and C. Chaikalis, "Increasing the quality and performance of n-dimensional point anomaly detection in traffic using pca and dbscan," in 26th Telecommunications Forum (TELFOR). Belgrade, Serbia: IEEE, 20-21 Nov., 2018, pp. 1–4.
- [6] X. Zhao, G. Wang, and Z. Li, "Unsupervised network anomaly detection based on abnormality weights and subspace clustering," in *Sixth International Conference on Information Science and Technology (ICIST)*. Dalian, China: IEEE, 6-8 May., 2016, pp. 482–486.
- [7] M. Z. Alom and T. M. Taha, "Network intrusion detection for cyber security using unsupervised deep learning approaches," in *National Aerospace and Electronics Conference (NAECON)*. Dayton, OH, USA: IEEE, 27-30 June., 2017, pp. 63–69.
- [8] D. S. Terzi, R. Terzi, and S. Sagiroglu, "Big data analytics for network anomaly detection from netflow data," in *International Conference on Computer Science and Engineering (UBMK)*. Antalya, Turkey: IEEE, 5-8 Oct., 2017, pp. 592–597.

- [9] Z. Chen and Y. F. Li, "Anomaly detection based on enhanced dbscan algorithm," *Procedia Engineering*, vol. 15, pp. 178–182, 1 Jan., 2011.
- [10] Z. Chen, C. K. Yeo, B. S. L. Francis, and C. T. Lau, "Combining mic feature selection and feature-based mspca for network traffic anomaly detection," in *Third International Conference on Digital Information Processing, Data Mining, and Wireless Communications (DIPDMWC).* Moscow, Russia: IEEE, 6-8 July., 2016, pp. 176–181.
- [11] W. Chen, F. Kong, F. Mei, G. Yuan, and B. Li, "A novel unsupervised anomaly detection approach for intrusion detection system," in *IEEE 3rd international conference on big data security on cloud (BigDataSecurity).* Beijing, China: IEEE, 26-28 May., 2017, pp. 69–73.
- [12] M. Odiathevar, W. K. Seah, and M. Frean, "A hybrid online offline system for network anomaly detection," in 28th International Conference on Computer Communication and Networks (ICCCN). Valencia, Spain: IEEE, 29 July-1 Aug., 2019, pp. 1–9.
- [13] M. T. Hossain, M. S. Hossain, and H. S. Narman, "Detection of undesired events on real-world scada power system through process monitoring," in 11th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON). New York, NY, USA: IEEE, 28-31 Oct., 2020.
- [14] "DARPA intrusion detection evaluation dataset," 1999, https://archive.ll.mit.edu/ideval/data/1999data.html.

