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1. Motivation

Current rising population results in an increase in
the number of vehicles. A higher number of
vehicles results in the following issues:

Heavy traffic

Heavy consumption of oil and fuel resources

Large carbon emissions
Decreased air quality

Affects human health and other living beings on the
planet

Overall results in Global Warming, profoundly affecting
the environment
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Basic Ride Sharing Model

DEFINITION - RIDERS TRAVEL THROUGH A COMMON PATH TO REACH THE SAME OR NEARBY
DESTINATION.




Limitations in Existing Ride Sharing
Applications

“Ride Sharing only efficient when the pool of the trip is completed.

“Car-Pooling discouraged due to social barriers.
“Sudden elongation of trips due to unexpected addition of riders.

“Absence of the rider-to-rider feedback system.

“Unfair pricing or billing models.




2. Enhanced Ride Sharing Model (ERSM)

BASIC RIDE SHARING MODEL

FIRST MATCHING LAYER

Characteristics

Matching

Matching Riders Having Similar, Closer or
Alternative Characteristics

SECOND MATCHING LAYER

User Threshold
Time Matching

Matching Riders Whose Source & Destination
Are Within Restricted Waiting Time of Riders
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4. The Proposed Model

THE CHARACTERISTICS MATCHING
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Machine Learning Recommendation System

i CHATTY: 3
Broadcasting ‘ SAFETY: 4 [chatty, safety, punctuality,
Registered Rider-‘ PUNCTUALITY: 3 friendliness, comfortability]

FRIENDLINESS: 3
COMPFORTABILITY : 4 char_v, = [3,4,3,3,4]
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5. The Feedback System and the
Machine Learning Models



The Rider Feedback System

" The feedback system is designed for tracking
the rider characteristics and generation of
classifiers.

" The feedback consists of rating the drivers plus
riders in terms of the five characteristics.

chattypiger,: 5

‘ safetypige,,: 3 ‘
- punctuality,;,. ,,: 3 -
friendlinessRiderlzz 0

comfortabilityg.4.,1,: O




Computing Feedback Based Classifiers

*The search criteria for the users is redefined using the computed classifiers.

*Classifiers are computed using the equation for variance.

52 Zz]il(x — xz’)2
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Li=1[1,0,5,4,0] VarianceofL1=5.5

Ly =10,0,0,0,2] Variance of L2 = 0.8

L3 =[4.4.4,4.4] \Variance of L3=0.0




The Feedback-Given-Classifier

Let the feedback given by Rider, to Rider,, Rider,, and Rider, be as follows:

Riders | Chatty | Safety | Punctuality | Friendliness | Comfortability
Riders 0 2 1 4 0
Riders 0 3 0 4 0
Ridery 1 5) 0 4 0

*Generate Sample sets for every characteristic and compute variance for Rider;:
=[0,0,1]
[4,4,4]

ChattyRiderl

friendlinessgiyers =

safetypyor1 = 12,3,5]

comfortabilityg,yo,, =

punctualityp. g =

[0,0,0].

*Feedback-Given-Classifier = (In this example) safety class

[1,0,0]




The Feedback-Received-Classifier

Let the feedback provided to Rider, by Rider,, Rider;, and Rider, be as follows:

Riders | Chatty | Safety | Punctuality | Friendliness | Comfortability
Riders 4*%0.32 | 2%4.31 0%2.10 2%0.1 4*1.73
Riders 3%3.45 | 1%0.15 1%0.55 0*5.72 3%3.34
Ridery 3%9.21 | 0*3.21 3%0.02 0*0.21 0%1.32
> Total | 39.26 8.77 0.61 0.2 16.92

*Initially, fetch every characteristic variance of every rider.
*Multiply by the fetched variance by respective rated value.

* Integrate all ratings characteristic wise.

*Feedback-Received-Classifier = (In this example) chatty class for Rider,

RV




The Support Vector Machines (SVM)

*The function of the SVM is Classifiers prediction.

*Input to the SVM are the registered characteristics and UTT.

*The output is the computed classifier.

°For two classifiers, we have 2 distinct SVM modules.

*The prediction by the SVMs marks the last step of the proposed architecture.

Feedback-Given-Classifier Data-set

Class_Given | Chatty | Safety | Punctuality | Friendliness | Comfortability| UTT
Comfortability 3 5 4 1 4 20
Chatty 1 2 4 3 5 10

Y



6. EXperimentations
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7. Results

Performance Measures of a Machine Learning Classification Model
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Performance Measures of Feedback-Given-Classifier SVM
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Overall SVM Accuracy: 91.65%
Root Mean Square Error: 0.64
Accuracy Measure By Class

Measurement(%) | Chatty | Safety | Punctuality | Friendliness | Comfortability
F1 Score 92.34 91.65 01.07 01.92 90.90
Precision 87.04 90.40 91.97 95.84 97.35
Recall 98.31 92.94 90.20 88.32 85.25
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Performance Measures of Feedback-Received-Classifier SVM
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Overall SVM Accuracy: 91.33%
Root Mean Square Error: 0.42
Accuracy Measure By Class

Measurement(%) | Chatty | Safety | Punctuality | Friendliness | Comfortability
F1 Score 87.85 89.02 90.63 93.22 93.21
Precision 86.13 87.52 92.58 91.97 05.48
Recall 89.21 88.82 89.67 94.49 96.96
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Observations
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TOTAL NUMBER OF COMPLETED TRIPS

Objective: Observe the effects on the completed trips.
Results: The number of completed trips increases as the number of riders increases.
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NUMBER OF MATCHES BY MATCHING TYPE

Objective: Observe the effects on number of rider matches by the characteristics matching types.
Results: High percentage of matching achieved for Exact or Closer characteristics matching.
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8. Conclusion

We implemented the proposed Enhanced Ride Sharing Model based on rider characteristics addressing the current
user expectations and discovered issues in the existing systems.

The average trip formation time in both phases rounds up to a minute, which promotes in providing a timely
response to the passengers.

The goal of the pool completion for a maximum number of trips achieved. The goal of pairing maximum riders with
similar characteristics achieved in Phase 2.

Machine Learning SVM modules run with an accuracy of 90% and provides a quality prediction of classifiers. Also,
the recommendation system eliminates large computations and assists in tuning up the model performance during
matching of riders.

The overall system efficiency is tested by subjecting the model to an extensive simulation. The parameters,
matching rate, completed trip count and trip simulation time keeps increasing with the increasing number of riders,
which proves that the model performance is consistent as the rider count keeps scaling up.




Shortcomings

1. The limitation of zones — The Ride Sharing model currently performs
matching on the basis of zones

2. The limitations of Google Map Keys — System ceases to function if a
Google Map API Key is completely utilized.

3. Allocation a rider with Exact characteristics for every trip is difficult.
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