

IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS

COMMUNICATIONS: CENTREPOINT OF THE DIGITAL ECONOMY

h-DDSS: Heterogeneous Dynamic Dedicated Servers Scheduling in Cloud Computing

CONNECT WITH IEEE ICC:

lin

Husnu Saner Narman Md. Shohrab Hossain Mohammed Atiquzzaman

School of Computer Science University of Oklahoma, USA. <u>atiq@ou.edu</u> <u>www.cs.ou.edu/~atiq</u>

June 2014

What is Cloud Computing

Why Cloud Computing

- Simplicity
 - No need to set up software/hardware
- Flexibility
 - Easily extending memory/CPU capacity
- Maintenance
 - IT services
- Time and energy
 - No time or extra effort for desired environment
- Pay as you go

No need to pay for unused hardware or software

What is Cloud Scheduling

Customer Type

- Different customers classes?
 - Paid and non-paid
- Customer requirements
 - Desired Platform based on Service Level Agreement
- How to satisfy different customer classes?
 - Reserve servers for each customer types
 - Dedicated Servers Scheduling
 - Priority
 - High or Low

Customer Priority

Without priority level in queuing theory

With priority level in cloud computing

Reserved Servers

Dedicated Servers Scheduling

Q

Dedicated Servers Scheduling

Problems with DSS

- Does not dynamically update number of servers for each group
 - If arrival rate changes
 - If priority level changes
- Servers are homogeneous (Unrealistic)

The University of Oklahoma

Dynamic Dedicated Servers Scheduling

The University of Oklahoma

Dynamic Dedicated Servers Scheduling

Problems with DDSS

Servers are homogeneous (Unrealistic)

Why Heterogeneous

 Failed or misbehaved servers of a multiserver system are replaced by new and more powerful ones

Heterogeneous Servers

Objective

- Improve performance of cloud systems for heterogeneous servers
 - Allowing heterogeneous servers to be dynamically allocated to customer classes based on
 - Priority level.
 - Arrival rate.

Contribution

- Propose Heterogeneous Dynamic Dedicated Servers Scheduling.
- Develop Analytical Model to evaluate performance
 - Average occupancy
 - Drop rate
 - Average delay
 - Throughput
- Comparing performance of
 - Heterogeneous Dynamic Dedicated Servers Scheduling
 - Dynamic Dedicated Servers Scheduling.

Heterogeneous Dynamic Dedicated Servers Scheduling

The University of Oklahoma

Heterogeneous Dynamic Dedicated Servers Scheduling

Dynamic Approach

Modeling Assumptions

- System is under heavy traffic flows.
- Arrivals follow Poisson distribution, and service times for customers are exponentially distributed.
- Type of queue discipline used in the analysis is FIFO.
- Service rate of all servers can be different.

 λ_1 : Arrival rate

of C_1 customers

Analytical Model

- Only C_1 customers performance metric developed.
- Markov Chain Model :

Performance

• Drop Probability : $D = p_0 \frac{\mu_{tm}^{m+N} \rho^{m+N}}{\frac{m}{m}}$

$$p_0 rac{\mu_{tm}^{m+N} \rho^{m+N}}{\prod\limits_{j=1}^m \mu_{tj}}$$

Drop probability

Rate of dropped customers from the systems buffer.

Number of customers served in the systems.

Average waiting time

of a customer in the

systems buffer.

• Throughput: $\gamma = \lambda_1(1 - D)$

• Occupancy:
$$n = \begin{cases} p_0 \frac{\mu_{tm}^m}{\prod \mu_{ti}} \rho^{m+1} \left(\frac{1 - (N+1)\rho^N + N\rho^{N+1}}{(1-\rho)^2} \right) & \rho \neq 1 \\ \prod_{i=1}^{m} \mu_{ti}} p_0 \frac{\mu_{tm}^m}{\prod_{i=1}^m \mu_{ti}} \left(\frac{N(N+1)}{2} \right) & \rho = 1 \\ p_0 \frac{\mu_{tm}^m}{\prod_{i=1}^m \mu_{ti}} \left(\frac{M(N+1)}{2} \right) & \rho = 1 \end{cases}$$

• Delay:
$$\delta = \frac{n}{\gamma}$$

Results

- We have used discrete event simulation to implement by following $M/M_i/N/N$ and proposed scheduling.
- Each queue holds 30 customers.
- We ran simulation with 20000 customers for each arrival rate.
- We show h-DDSS with Fastest Server First (FSF) and Slowest Server First (SSF) to compare best and worst performance.

Traffic Arrival Rates

- Simulations were carried out with increased arrival rates of all types of customers to observe the impact of heavy traffic on the system.
- Customer arrival rates at different trials:

$$\lambda_1 = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\},\ \lambda_2 = \{2, 4, 6, 8, 10, 12, 14, 16, 18, 20\},\ \Psi_1 = \{2, 3\}, \Psi_2 = \{1\}$$
 and
 $\mu = 1, 2, ... 7$ for heterogeneous servers and
 $\mu = 4$, for homogeneous servers with 7 servers

The University of Oklahoma

Validation of Analytic Formulas: Occupancy

Occupancy model matches with simulation.

The University of Oklahoma

Validation of Analytic Formulas: Throughput

Throughput model matches with simulation.

h-DDSS is heterogeneous.

h-DDSS vs DDSS DDSS is homogeneous.

DDSS shows better occupancy than h-DDSS for these priority levels.

The University of Oklahoma

h-DDSS is heterogeneous.

h-DDSS vs DDSS DDSS is homogeneous.

h-DDSS shows better occupancy than DDSS for these priority levels.

h-DDSS is heterogeneous.

h-DDSS vs DDSS is homogeneous.

DDSS shows better throughput than h-DDSS for these priority levels.

h-DDSS is heterogeneous.

h-DDSS vs DDSS is homogeneous.

h-DDSS shows better throughput than DDSS for these priority levels.

Summary of Results

- Priority levels do not affect the performance of DDSS and h-DDSS under low traffic.
- Under heavy traffic, priority levels have a significant impact on the class performances of DDSS.
- Under heavy traffic, performances of FSF and SSF in h-DDSS are same while FSF is better for low traffic arrivals.
- h-DDSS can be more efficient than DDSS for selected class priority levels

Conclusion

- We have proposed a novel scheduling algorithm for cloud computing considering priority, arrival rate and heterogeneous servers.
- Performance metrics of the proposed cloud computing system are presented through different cases.
- h-DDSS and DDSS are compared under different priority levels.
- Proposed scheduling algorithm can help Cloud Computing with homogenous and heterogeneous servers systems have higher throughput and be more balanced.

Thank You

http://cs.ou.edu/~atiq atiq@ou.edu