

AUSTIN, TX USA \* 8-12 DECEMBER 2014 \* THE GREAT STATE OF COMMUNICATIONS COMMUNICATIONS

E f in

# Carrier Components Assignment Method for LTE and LTE-A Systems Based on User Profile and Application

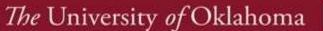
Husnu Saner Narman

**Mohammed Atiquzzaman** 

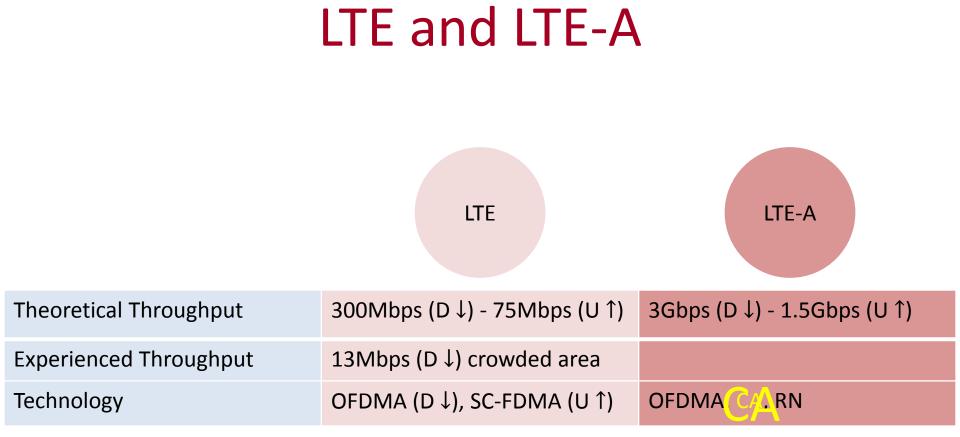
School of Computer Science

University of Oklahoma, USA.

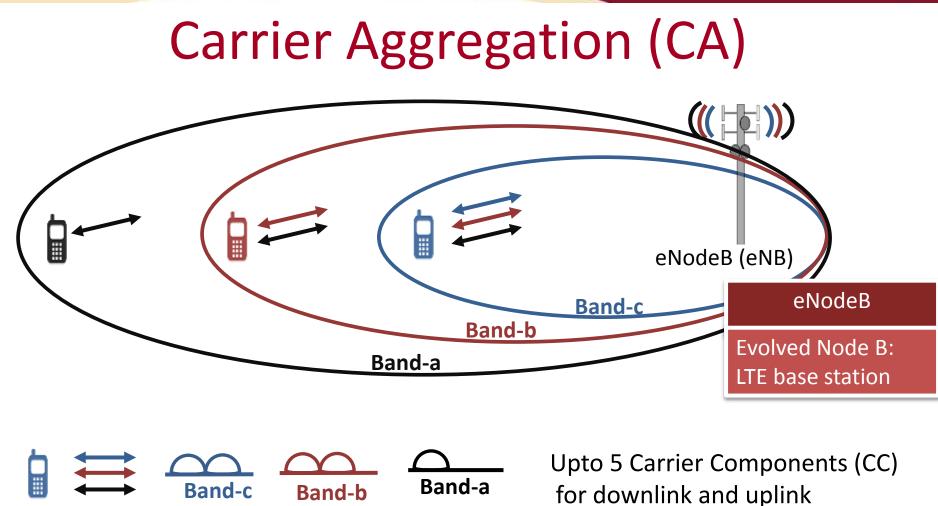
atiq@ou.edu


www.cs.ou.edu/~atiq

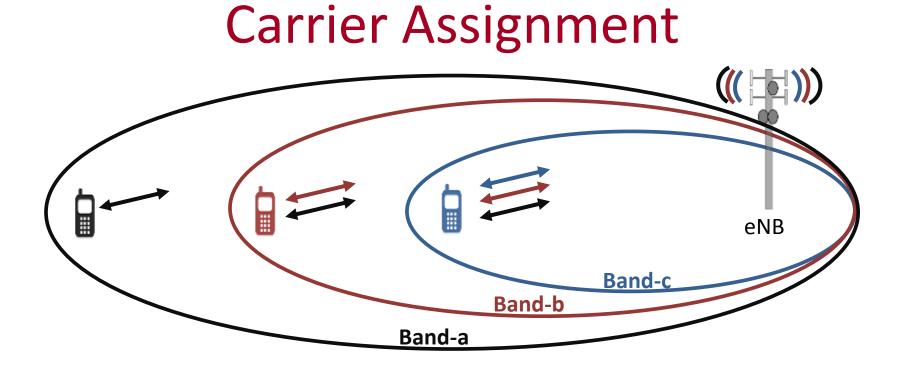
December 2014




#### **Communication Speed Over Generation**


|                    |            |                     | <b>_</b>            |                                    |                                            |  |  |
|--------------------|------------|---------------------|---------------------|------------------------------------|--------------------------------------------|--|--|
|                    |            |                     | Definition          | Digital, Broadband,<br>Packet data |                                            |  |  |
|                    |            |                     | Throughput          | 3Mbps (D↓),<br>700kbps(U↑)         |                                            |  |  |
|                    |            |                     | Technology          | CDMA2000, UMTS,                    |                                            |  |  |
| Definition         |            | Analog              |                     | EDGE                               | 4G                                         |  |  |
| Throughput 14 kbps |            | 14 kbps             | 3G                  |                                    |                                            |  |  |
| Technology         |            | AMPS, NMT,<br>TACS, |                     |                                    |                                            |  |  |
|                    |            |                     | 2G                  | Definition                         | Digital, Broadband,<br>Packet data, All IP |  |  |
| 1G                 |            |                     |                     | Throughput                         | 300Mbps (D↓),                              |  |  |
| Definition         |            | ition               | Digital, Narrowband | <mark>, k</mark>                   | 5Mbps (U 1)                                |  |  |
|                    |            |                     | Circuit Data        | Technology                         | WIMAX LIE, WI-FI                           |  |  |
|                    | Throu      | ughput              | 14.4 kbps           |                                    |                                            |  |  |
|                    | Technology |                     | CDMA, TDMA, GSM     | l i                                |                                            |  |  |


















#### **Problems:**

- 1. Which band should eNB assign to each user?
- 2. How many CCs should be assigned to each user?



### **Current Solutions for Carrier Assignment**

- Carrier Assignments
  - Randomly select band for each user (R)
    - Not utilize and balance bands in short term and No QoS
  - Methods based on Load Balancing
    - Selecting Least Loaded band for each user (LL)
    - Well utilizing and balancing bands and can provide QoS
  - Methods based on Channel Quality Indicator (CQI)
    - Assigning channel based on channel quality and can provide QoS.
- Number of Required CCs
  - How many CCs is required?
    - All of CCs can be used but increasing energy consumption of devices





01234 56789



# Why need another Carrier Assignment Method?

- More advance Carrier Assignment Method is required to satisfy users
  - Increasing bandwidth demand
  - Limitation of resources (battery of devices and bandwidth)
  - Traffic management (real time and non-real time traffic)
  - Determining the number of required Carrier Components



#### Why User Profile

- User profile of each user for each eNB
  - Application type
    - What type of applications are used by users? (such as game, mail, video, talking..)
  - Data consumption
    - How much data do users use? (such as 100MB non-real time, 1GB real time)
  - Time
    - When do users mostly consume data during the day? (such as 10:00 am – 11:00 am)
  - Location
    - Where do users spend the most time during the day? (such as school, work, road ...)
  - Users' device type
    - LTE (Only 1 CC), LTE-A full (Upto 5 CCs), LTE-A low (Only 1 CC)





# Why Carrier Assignment Based on User Profile



Make users happy

Satisfy users based on the behaviors



# Objective

- Increasing QoS by proposing a Carrier Components assignment method
  - Allowing eNBs to be dynamically allocated to users to carrier components based on:
    - user profiles
    - traffic types



#### Contribution

- Defining user profiles with respect to traffic types and mobility
- Proposing a novel CCs assignment algorithm based on user profiles and traffic types
- Evaluating performance of the proposed method with extensive simulation

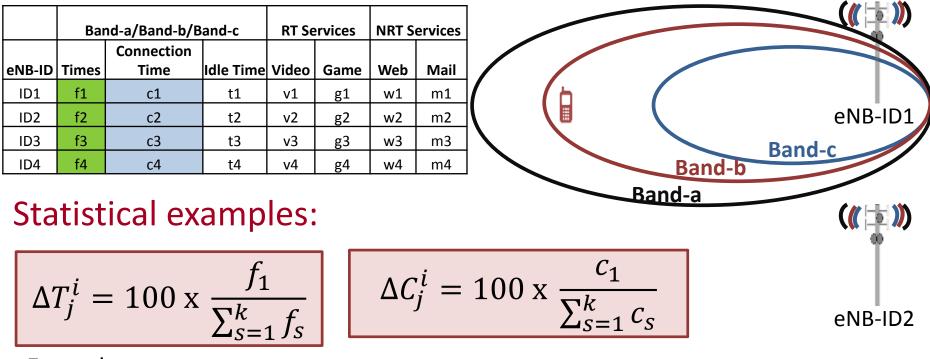


## **User Profile Examples**

|               |     |             | User Profile |            |             |                  |                     |  |  |
|---------------|-----|-------------|--------------|------------|-------------|------------------|---------------------|--|--|
|               |     |             | Teenager     | House wife | Businessman | Graduate Student | <b>Grand Parent</b> |  |  |
| Traffic Types | RT  | Video       | Very High    | Middle     | Low         | Medium           | Low                 |  |  |
|               |     | Online game | Very High    | Low        | Low         | Medium           | Low                 |  |  |
|               |     | Movie       | Very High    | Very High  | Low         | Medium           | Low                 |  |  |
|               |     | Talk        | Low          | Medium     | High        | Medium           | Very High           |  |  |
|               |     |             |              |            |             |                  |                     |  |  |
|               | NRT | Web         | High         | Low        | Very High   | Medium           | Low                 |  |  |
|               |     | Mail        | High         | Low        | Very High   | Medium           | Low                 |  |  |
|               |     | SMS         | Very High    | Medium     | Low         | Medium           | Low                 |  |  |
|               |     |             |              |            |             |                  |                     |  |  |
|               |     | Mobility    | Low          | Medium     | Very High   | Low              | Low                 |  |  |
|               |     | Location    | Low          | Medium     | High        | Medium           | Low                 |  |  |





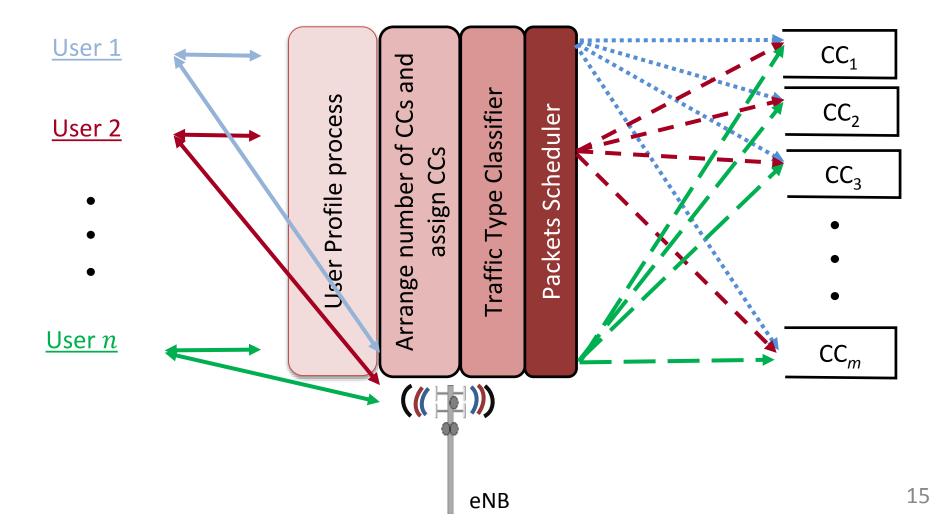









### **User Profile Detection**



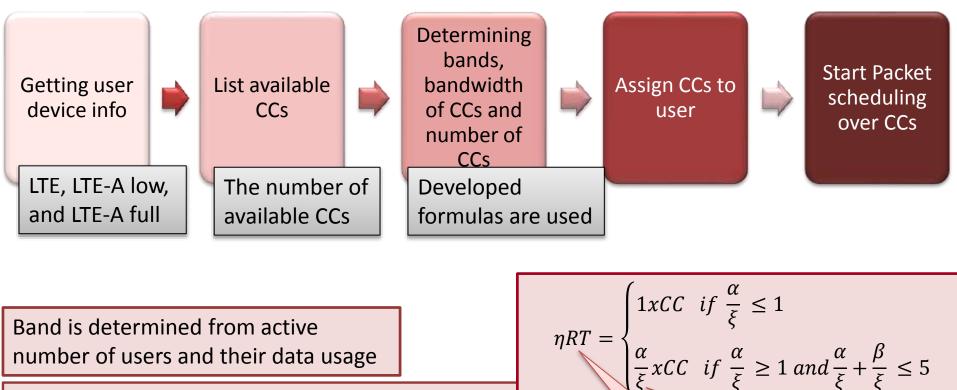

Examples

- Case1: Higher  $\Delta C$  and lower  $\Delta T \rightarrow$  User spends more time around eNB •
- Case2: Lower ΔC and higher ΔT → user temporarily request service from •
  eNB such as driving to home/work.



# Carrier Assignment Based on User Profile Model






# Estimating number of CCs

- Required number of CCs is estimated based on <u>data usage</u> and <u>mobility of UEs</u> (user profiles).
- <u>Estimating RT and NRT data usage</u> for a UE helps an eNB arrange the number of CCs and their bandwidth sizes.
- Estimating <u>mobility</u> of a UE reduces handover overheads and risk of connection loss.



#### **Carrier Assignment Based on User Profile**



average real time data usage in this eNB

 $\alpha = \frac{g}{Sum \ of \ average \ real \ time \ data \ usage \ in \ all \ eNBs}$ 

average non – real time data usage in this eNB

Sum of non – real time average data usage in all eNBs

Data rate which can be carried by a CC

Required number of CCs for real time traffic

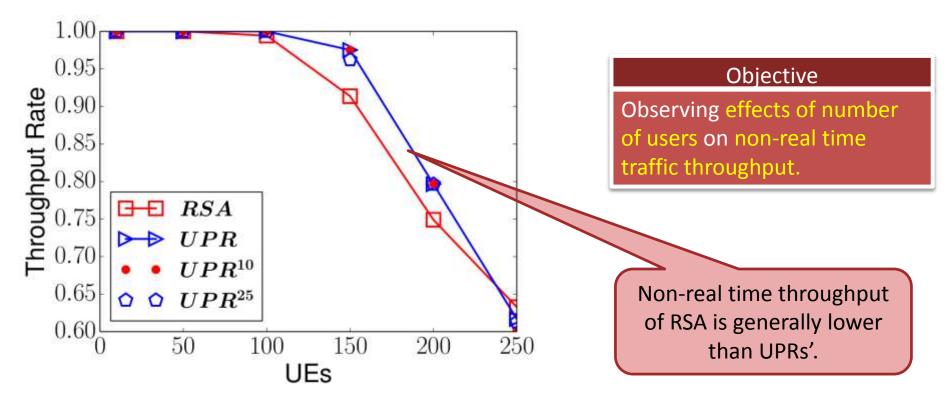


### Results

- Discrete event simulation by following M/M<sub>i</sub>/N and proposed carrier assignment.
- 1000 realizations for different number of users with increasing data traffic.
- We compare
  - RSA (Random with full CCs assignment),
  - UPR (Random dynamic CCs assignment based on perfect user profile estimation),
  - UPR<sup>10</sup> (Random dynamic CCs assignment based on 10% error user profile estimation)
  - UPR<sup>25</sup> (Random dynamic CCs assignment based on 25% error user profile estimation)



#### RSA is random with 4 CCs. (Band-a) RSA is random with 4 CCs.

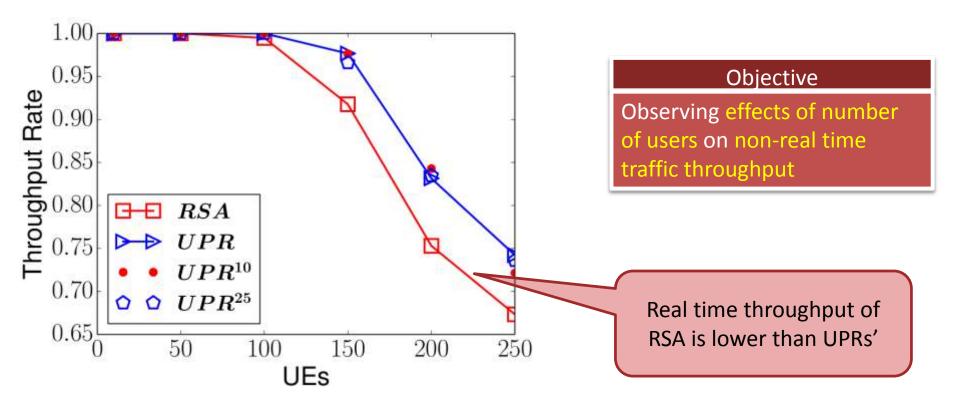

1.0r Objective RSA Observing effects of number of UPR0.8users on utilization of Band-a.  $UPR^{10}$ Jtilization 0.6 $UPR^{25}$ 0.4Band-a utilization of RSA is 0.2higher than UPRs' ones. RSA = Random Carrier Component Assignment with 0.0static number of Carrier Components. 100 15020025050UPR = Random CCs assignment with dynamic number UEs of CCs based on perfect user profile estimation.

Although overall average utilization of the four cases are similar, the utilization of each band is different.





UPRs is proposed assignment with errors and at most 4 CCs.




UPRs are better than RSA in terms of non-real time traffic throughput until the number of users is 200.



RSA is random with 4 CCs. (RT)

UPRs is proposed assignment with errors and at most 4 CCs.



UPRs are better than RSA in terms of real time traffic throughput.



# Summary of Results



Improving throughput comparing to RSA.

UPRs

Performance of UPRs is not much affected by error in profile estimation upto 25%.





# Q

#### Conclusions





# Thank You



http://cs.ou.edu/~atiq atiq@ou.edu