Utilizing Distance Distribution in Determining Topological Characteristics of Multi-hop Wireless Networks

Husnu Saner Narman
Content

• Motivation
• Contribution
• Link Probability
• Topological Characteristics
• Conclusion
• References
Content

- Motivation
- Contribution
- Link Probability
- Topological Characteristics
- Conclusion
- References
Topological Characteristics

Degree: # of nodes in communication range

Average shortest path

Diameter: Longest shortest path

Link Probability
Degree
Average shortest path
Diameter,
Similarly for 3D

Are there any link? What is probability?
Importance of Topology Characteristics

• Performance of Protocol
 – Diameter
 • Bounds the maximum delay in message communication
 – Average Shortest Path
 • How efficient data transmission

• Security
 – Degree
 • Higher degree means higher node connectivity

• Generate more realistic topologies for Simulations
Content

• Motivation
• Contribution
• Link Probability
• Topological Characteristics
• Conclusion
• References
Contribution

• Developed Analytical Formulas for 2D and 3D
 – Link Probability
 – Diameter
 – Average Shortest Path
 – Degree
Content

• Motivation
• Contribution
• Link Probability
• Topological Characteristics
• Conclusion
• References
Link Probability

Probability of $d < r$

$$F_{2D} = r^2 \left(\frac{r^2}{2} - \frac{8r^3}{3} + \pi \right) \text{ where } 0 \leq r \leq 1$$

Distance distribution of unit cube between 0 and 1

$$f_{3D} = 4t^2 - 6\pi t^3 + 8t^4 - t^5$$

$$F_{3D} = \int_0^r f_{3D}(t) \, dt$$

$$F_{3D} = \frac{4\pi r^3}{3} - \frac{6\pi r^4}{4} + \frac{8r^5}{5} - \frac{r^6}{6} \text{ where } 0 \leq r \leq 1$$

Link probability or probability of $d < r$
Test of Link Probability

Link probability depends on only r in both 2D and 3D
Test of Link Probability for less nodes

Link probability in 3D is less than 2D

Link probability depends on only r in both 2D and 3D for less number of nodes
Content

• Motivation
• Contribution
• Link Probability
• **Topological Characteristics**
• Conclusion
• References
Average Degree

\[E_{ND}(n, r) = (n-1) F_{ND}(r) \]

\[E_{2D}(n, r) = (n-1) \left(r^2 \left(\frac{r^2}{2} - \frac{8r}{3} + \pi \right) \right) \]

\[E_{3D}(n, r) = (n-1) \left(\frac{4\pi r^3}{3} - \frac{6\pi r^4}{4} + \frac{8r^5}{5} - \frac{r^6}{6} \right) \]
Test for Average Degree

Exactly matches in 3D and 2D
Diameter

\[\text{Diameter}_{ND}(r) = \left\lfloor \frac{\sqrt{N}}{r} \right\rfloor\]

\[\text{Diameter}_{2D}(r) = \left\lfloor \frac{\sqrt{2}}{r} \right\rfloor\]

\[\text{Diameter}_{3D}(r) = \left\lfloor \frac{\sqrt{3}}{r} \right\rfloor\]
Test for Diameter

While r increased, approximation getting better.

Our approach more effective in 2D and
Average shortest path length

Expected Distance \(ND \) = \(\int_{0}^{\sqrt{N}} t f_{ND}(t) dt \) where \(f_{ND}(t) \) is distance pdf

\[
E_{hopND} \geq \frac{\text{Expected Distance}_{ND}}{r}
\]

\[
E_{hop2D} \geq \frac{0.52140543}{r}
\]

\[
E_{hop3D} \geq \frac{0.661707182}{r}
\]

0.52.. is expected distance in unit square

0.66.. is expected distance in unit cube
Test for Average shortest path

Approximation and simulation follow similar path

Avg. shortest of 3D higher than 2D
Content

• Motivation
• Contribution
• Link Probability
• Topological Characteristics
• Conclusion
• References
Conclusion

• Developed Analytical Formulas for 2D and 3D
 – Link probability
 – Degree
 – Diameter
 – Average Shortest Path
• All formulas are verified by Simulation
• Studied effects of communication range and number of nodes to Topology in Networks
Future Work

• Develop formulas for some other characteristics
 – Coverage
 – Connectivity
 – Entropy (Randomness of a network)

• Study Topological Characteristic under motion environment in Wireless Network
Questions
References

References