

Multi Class Traffic Analysis of Single and Multi-band Queuing System

Husnu Saner Narman Md. Shohrab Hossain Mohammed Atiquzzaman

> School of Computer Science University of Oklahoma

Presentation Outlines

- Single Band Router Architecture
- Proposed Multi Band Router Architecture
- Analytical Models
- Results
- Conclusion

What is Band in Routers?

_

Mohammed Atiquzzaman

3

Single Band Router Architecture

- All packet types share one band based on priority.
- Multi-Band approach can allow higher amount of traffic
 - Higher throughput.

Problem Statement

- Current multi-band routers
 - 2.4 and 5 GHz for different types of devices.
- They do not exploit the under utilized frequency band when one is overloaded.

Objectives of this research

- Increase utilization of bands by diverting traffic to under-utilized band. Traffic types:
 - real time,
 - non-real time, and
 - binding update traffic.
- Evaluate performance of multi-band router over single-band architecture.

Contribution

- Propose a band-sharing mulitband router architecture
- Scheduling algorithm to ensure maximum utilization of bands.
- Develop analytical model for performance evaluation of proposed multi-band router.
- Compare proposed multiband with single band routers for two scheduling policies.

The University of Oklahoma

Proposed Multi Band Router Architecture

The University of Oklahoma

Proposed Multi Band Router Architecture

Scheduling Algorithm

- Attempt first made to queue different traffic classes in their corresponding buffers.
- If N-queue overflows, traffic is forwarded to Bqueue.
 - Overflowed NRT and RT packets compete in B-queue based on priority.
- If overflowed NRT packets cannot be accommodated in B-queue, they are queued in R-queue.
- Similar policy R-queue overflows.

Analytical Model

- Assumptions:
 - Packet arrival follows Poisson distribution.
 - Type of queue discipline used in the analysis is FIFO with nonpreemptive priority among various traffic classes.
- Notations $(T \in \{B, N, R\},)$
 - − N_T → Queue size of T − queue
 - α_T → Arrival rate of T − class
 - μ_{*T*} → Service rate of *T* − queue
 - − E(n) → Average occupancy, E(D) → Average delay
 - P_d → Drop rate, γ → throughput,
 - − χ → Number of dropped packets
 - $E(D_{TQ}^{T}) \rightarrow \text{Delay of } T \text{class in } T \text{queue}$

Analytical Model : Performance Metrics

- We have derived approximate <u>queue and class based</u> (queue based is each queue such as N-queue performances, class based is each class such as RT traffic) performance metrics for the proposed multi-band architecture.
 - Packet drop probability
 - Average queue occupancy
 - Throughput
 - Average packet delay
 - Band Utilization
- Possible Cases:
 - Case 0: BU packets are not overflowed at any time (general assumption).
 - Case 1: Only NRT type packets are overflow
 - Case 2: Only RT type packets are overflow
 - Case 3: Both NRT and RT types packets overflow
 - Case 4: NRT and RT types packet do not overflow (M/M/1/N)

Analytical Model: Case 1

• Case 1: Only NRT type packets are overflowed and $\mu_R > \mu_B$ (**FSF**). Let's see NRT performance metrics.

Analytical Model: MB system

 Averaging *class <u>base</u>* metrics to compare multi-band with Single band.

•
$$E(n_{Total}^{MB}) = E(n_B) + E(n_N) + E(n_R)$$

- $P_{d(avg)}^{MB} = \frac{\alpha_B P_{dB} + \alpha_N P_{dN} + \alpha_R P_{dR}}{(\alpha_B + \alpha_N + \alpha_R)}$
- $\gamma_{all}^{MB} = \gamma_B + \gamma_N + \gamma_R$

•
$$E(D_{avg}^{MB}) = \frac{\gamma_B E(D_B) + \gamma_N E(D_N) + \gamma_R E(D_R)}{\gamma_{all}}$$

Results

- Discrete event simulation in MATLAB
- MB router buffer size = 50 packets per buffer
- Single band buffer = 150 packets.
- RT and NRT packets: 512 bytes, BU packets: 64 bytes.
- Single band service rate = highest service rate of MB.
- Simulation carried out for 20 trials having different traffic class arrival rates.

Traffic Arrival Rates

- Simulations with increased arrival rates of all types of traffic to observe the impact of heavy traffic on the multi-band system.
- Traffic class arrival rates at different trials:

 $\alpha_B = \{i\}, \alpha_N = \{3i\}, \text{ and } \alpha_R = \{10i\} \text{ where } i = 1, 2 \dots, 20.$

- RT traffic arrival rate is increased at a much higher rate
 - This eventually saturates the R-queue
 - Helps explain the impact of R-quue overflow on performance of the routers.

- Single Band has lower utilization for low arrival rates.
- Multi Band has lower utilization for high arrival rates.
- Both FSF and LUF architecture have similar utilization until trial $13^{\text{th}} \left(\frac{\alpha_B}{\mu_B} < \frac{\alpha_N}{\mu_N}\right)$.

The University of Oklahoma

Overall Avg. Delay and Drop Rate of Systems

- Delay and Drop rate of Single and Multi bands systems are same for low arrival rates.
- Delay and Drop rate of Single band system is much higher than Multi Band system for high arrival rates.
- Delay and Drop rate of FSF and LUF are almost same but FSF is better for some trial because some packets are waiting less in N-queue than B-queue.

The University of Oklahoma

Average Delay of Class Traffics

- Delay of class traffics of Single and Multi bands systems are same for low arrival rates.
- Delay of RT-class traffic of Single band is much higher than Multi band because of lower bandwidth of Single band and high arrival rates.
- Delay of FSF and LUF are almost same but FSF is better for some trial because RT-packets are waiting less in N-queue than B-queue.

Drop Rate of Class Traffics

- Drop Rate of class traffics of Single and Multi bands systems are same and lower for low arrival rates.
- Drop Rate of RT-class traffic of Single band is much higher than Multi band because of lower bandwidth of Single band and high arrival rates.
- Drop Rate of FSF and LUF are almost same but FSF is better for some trial because dropped RT-packets in B-queue are more than ones in N-queue.

Summary of Results

- Performance of multi-band architecture (both allocation policies) is better than single band architecture under heavy traffic.
- Multi-band systems do not use band as efficiently as single band for low traffic.
- FSF allocation policy in multi-band architecture has the best performance.
- The highest priority class in single band can have less delay than same class in multi-band architecture.
- Under heavy traffic, the lower priority class in single band has longer waiting time (in queue) than for multi-band architecture.
- Although FSF has less delay than LUF for RT class, there is no significant difference between throughput of FSF and LUF policies

Conclusion

- We have proposed a novel scheduling algorithm for multi-band mobile routers that exploits band sharing.
- Performance metrics of the proposed multi-band system are presented through different cases for fastest server first allocation.
- Single and multi bands are compared.
- Proposed scheduling algorithm can help network engineers build next generation mobile routers with higher throughput and utilization.

Q

Thank You

http://cs.ou.edu/~atiq atiq@ou.edu