

PhD Defense

Design and Development of Carrier Assignment and Packet Scheduling in LTE-A and Wi-Fi

Husnu S. Narman

Outline

ntroduction

objective

- Introduction
- Objective
- Multi-band in LTE-A
- Multi-band in Wi-Fi
- Conclusion

Wireless Communication

 A process by which information is exchanged between devices through a common system of signals over a frequency or band

ntroduction

obiectiv

onclusion

Multi-band Wireless Communication

- Using a number of different frequencies to communicate.
 - e.g. 2.4 GHz and 5 GHz

Introduction

objective

LTE-A

Wi-Fi

onclusion

Factors of Multi-band Wireless Communication^[1]

• Devices

- Different devices (support single or multi band)
- Users

Introduction

ctiv

. 0 0

nclus

- User profile (teenager, businessman) and a number of users
- Data
 - Data types (real time, non-real time)
- Bands
 - Characteristic of bands (e.g. 5 GHz Higher data transfer rate (bandwidth) with lower range)

Challenges

- Antenna design issues^{[2][3]}
 - Cost, space, interference
- Channel deployment^[4]
 - Routing^[4]
 - Wireless mesh networks
- Resource (band and channel) allocation^{[1][5][6]}
 - With scheduling and management

ntroduction

Applications of Multi Band Wireless Communication

- Cellular networks
 LTE-A^[7]
- Personal/Local area networks
 Wi-Fi (802.11n)^[8]
- Sensor networks^[4]
- Radar^[9]

Objective

- Analysis of multi-band communication in LTE-A and Wi-Fi
- Increasing performances of LTE-A and Wi-Fi by developing resource allocation and scheduling methods

Husnu S. Narman

Multi-band Communication in LTE-A

Husnu S. Narman

Scenario: LTE-A

The University of Oklahoma

Up to 5 Component Carriers (CC) for downlink and uplink

Key Challenges^{[27][28]}

Balancing user loads to bands

- Satisfying users
- Resource usage efficiency
 - Bandwidth
 - Power

Wi-Fi

The University of Oklahoma

First Problem Statement

objective

ntroduction

Development of carrier assignment in LTE and LTE-A by considering users' demands without wasting resources (power and bands)

222

troduction

Second Example

How many CCs should be assigned to each user?

The University of Oklahoma

Current Solutions

- Carrier Assignments
 - Randomly select band for each user (R)^{[31][33]}
 - Not utilize and balance bands in short term and no QoS^[30]
 - Methods based on Load Balancing^{[32][34][35]}
 - For example: Selecting Least Loaded band for each user (LL)

rodu

cti∢

TE-A

- Methods based on Channel Quality Indicator
 (CQI) ^{[36][37][38]}
 - Assigning channel based on its quality
 - Providing QoS

Current Solutions

- Number of Required CCs^[28]
- **01234** How many CCs is required?
 - All of CCs can be used^[29] but increasing energy consumption of devices and interference^[30]
 - Gradually increasing number of CCs but delay if more CCs needed

ntroduction

obiective

LTE-A

Conclusion

56789

ntroduction

objective

Why need another Carrier Assignment Method?

- More advance Carrier Assignment Method is required to satisfy users^[40]
 - Increasing bandwidth demands of users
 - 2 billion smart phones and tablets in 2017^[44]
 - Limitation of resources (battery of devices and bandwidth)
 - Data traffic management (real time and non-real time traffic)

• To measure the number of required Component Carriers

ntroduction objective LTE-A Wi-Fi

Why: Carrier Assignment Based on User Profile^{[40][42]}

			User Profile				
			UE1	UE ₂	UE ₃	UE ₄	UE₅
			(Teenager)	(Housewife)	(Businessman)	(G. Student)	(Grand Parent)
S	RT	Video	Very High	Middle	Low	Medium	Low
		Online game	Very High	Low	Low	Medium	Low
		Movie	Very High	Very High	Low	Medium	Low
		Talk	Low	Medium	High	Medium	Very High
ype							
raffic T	NRT	Web	High	Low	Very High	Medium	Low
		E-mail	High	Low	Very High	Medium	Low
F		SMS	Very High	Medium	Low	Medium	Low
		Mobility ^[41]	Low	Medium	Very High	Low	Low
		Location	Low	Medium	High	Medium	Low

Proposed: Carrier Assignment Based on User Profile

- Depends on
 - Type of used equipment
 - User behaviors
 - Load balance techniques
 - Channel Quality Indicator (CQI)
- Benefits of User Profile
 - Satisfying users based on their behaviors

User Profile Detection

The University of Oklahoma

Carrier Assignment Based on User Profile

Carrier Assignment Based on User Profile (Cont.)

number of CC = Average data usage of the user/CC service rate

Queue Packet Scheduling

LTE-A

Introduction

Simulation Environments

Scenario [42]	b
Number of eNB	1
Used Bands	800MHz, 1.8GHz, 2.6GHz
Number of CCs in Each Band	4
Total Number of CCs	12
Queue Length of Each Queue	50 packets
Bandwidth of CCs	10MHz
Modulations	QPSK, 16QAM, and 64QAM
CQI	3, 5, 7, and 11
Transmission Time Interval	10ms (10ms is average, it can be more or less)
Time for CCA	20ms (at most 20ms)
CQI Threshold	The highest possible
Simulation Model	Finite buffer [102]

- LTE (1 CC), LTE-A (4 CCs)
- Users are non-uniformly distributed and half of users is LTE-A type.
- 50% users are freely move around of the eNB.
- Min-delay packet scheduling.
- Packet arrival follows Pareto with increasing packet arrival rate.

Husnu S. Narman

Results-Average Delay

Average Delay

The average waiting time of transferred packets in the queues and service.

Objective

Observing effects of the number of users on average delay.

Results-Throughput Ratio

Throughput Ratio

Ratio of the successfully transferred packets to total processed packets.

Objective

Observing effects of the number of users on throughput ratio.

The University of Oklahoma

Q

Periodic Carrier Assignment

- Periodic Carrier assignment Method is developed^[39].
 - Periodically occurs in addition to mandatory reasons.
 - Carrier assignment methods are analyzed according to overall system performance.

[39] X. Cheng, G. Gupta, and P. Mohapatra, "Joint carrier aggregation and packet scheduling in LTE-Advanced networks," in Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks, New Orleans, LA, June 24-27, 2013, pp. 469–477

Sub-problem^[39]

ntroduction

LTE-A

Wi-Fi

Periodic reassignment of component carriers jointly happened for all users?

ntroductior

bjective

Selective Periodic Assignment Technique

Average Delay during Carrier Assignment Operations

Average Delay

The sum of delay of packets during the carrier assignment operations is divided to the number of processed packets.

Objective

Observing effects of the number of users on average delay.

Overall Average Delay

Average Delay

The average waiting time of successfully transferred packets in the queues and service.

Objective

Observing effects of the number of users on average delay.

Overall Throughput Ratio

Throughput Ratio

Ratio of the successfully transferred packets to total processed packets.

Objective

Observing effects of the number of users on throughput ratio.

Throughput ratio of the selective technique is higher.

Selective technique can increase overall throughput ratio up to 18%.

The University of Oklahoma

Improvements: Selective CCs for Periodic Assignment

Improving throughput ratio up to 18% comparing to joint periodic CCs assignment.

Selective-Periodic

Decreasing delay time up to 50% comparing to joint periodic CCs assignment.

rodu

obiectiv

LTE-A

Conclusion

ntroductior

- bjective
- LTE-A
- Vi-Fi
- nclusion

Summary of Contributions in LTE and LTE-A

- A novel carrier assignment method based on user profile is proposed in LTE and LTE-A.
- Selective technique is developed for periodic CCs assignment.
- Performances of the proposed methods are evaluated according to the queue systems and extensive simulations.

Research Papers on Carrier Assignment in LTE-A

- [1] H. S. Narman and M. Atiquzzaman, "Carrier components assignment method for LTE and LTE-A systems based on user profile and application," IEEE GLOBECOM Workshop on Broadband Wireless Access, Austin, TX, Dec 12, 2014.
- [2] H. S. Narman and M. Atiquzzaman, "Joint and partial carrier components assignment techniques based on user profile in LTE systems," IEEE Wireless Communications and Networking Conference (WCNC), New Orleans, LA, Mar 9-12, 2015, pp. 983-988.
- [3] **H. S. Narman** and M. Atiquzzaman, "Analysis of joint and partial component carrier assignment techniques in LTE and LTE-A," IEEE Global Communications Conference (GLOBECOM), San Diego, CA, Dec 6-10, 2015.
- [4] **H. S. Narman** and M. Atiquzzaman, "Selective periodic component carrier assignment technique in LTE and LTE-A systems," IEEE Global Communications Conference (GLOBECOM), San Diego, CA, Dec 6-10, 2015.
- [5] **H. S. Narman** and M. Atiquzzaman, "Joint and Selective Periodic Component Carrier Assignment Techniques for LTE-A," Submitted to Elsevier Computer Networks, 2016.
- [6] **H. S. Narman** and M. Atiquzzaman, "Carrier Components Assignment Method Based on User Profile in LTE and LTE-A," Submitted to Springer Wireless Networks, 2016.

Multi-band Communication in Wi-Fi (802.11)

Husnu S. Narman

Wi-Fi

Husnu S. Narman

The University of Oklahoma

Wi-Fi

Conclusion

0

Current Multi Band (802.11n generation)^[8]

The benefit of using multi-band router is less interference, higher capacity and better reliability.

The University of Oklahoma

Current Multi-Band Queuing System^[8]

Wi-Fi

ntroduction

objective

Key Challenges (Resource Allocation)^{[8][10]}

- Band utilization
- Traffic management
 - Real time
 - Non-real time
 - Binding update

The University of Oklahoma

Second Problem Statement

How to utilize bands of multi-band wireless routers and provide data traffic management based on the characteristics of bands

ntroduction

objective

Wi-Fi

onclusion

Current Solutions

- Traffic management methods based on priority^{[8][11*][12]}
- Dynamic Channel Allocation methods^{[8][11*][13]}
- Dynamic Bandwidth methods^{[8][11*]}
 - Instead of using 20MHz, using 40MHz or more

[8] http://grouper.ieee.org/groups/802/11/Reports/802.11_Timelines.htm[11] http://www.cisco.com/c/en/us/td/docs/ios/12_2/qos/configuration/guide/fqos_c/qcfconmg.html

Cti<

clusion

The University of Oklahoma

Current Multi-Band Priority Queuing System with Traffic Management

ntroduction

Disadvantages of Current Solutions

Dynamic bandwidth

- Instead of using 20MHz, using 40MHz or more
- Increase interference
- Advantage of bands are not considered
 - 2.4 GHz has higher range and 5 GHz has higher bandwidth

Wi-F

biectiv

0

- Priority based traffic management methods.
 - Giving priority to real-time or non-real time traffics
 - One traffic can get all services
 - Threshold can be used for traffic service but finding optimum threshold is another problem

Disadvantages of Current Solutions

- Dynamic channel allocation is good for
 - Throughput
 - Data traffic management
 - But not band utilization
 - One band can be flooded with data but the others cannot.

ntroduction

- objective
- LTE-A
- Wi-Fi
- onclusion

Why need another Router System

- Current multi-band routers do not utilize bands.
- No dynamic traffic management based on bands which also provide utilization.
 - Delay requirement of real time
 - Manual switching between bands
 - User may need to switch from one band to other.

Reading and Idea

- IMT-Advanced and Future Communication System^{[13][14*]}
- Each device may use multi-band simultaneously in 802.11
 - Smart home
 - High demand of bandwidth
 - 20 billion Internet connected device in 2020^[43]
 - 1 pbps (petabit (10¹⁵) per second in 50km) transfer over a fiber cable^[46]

objective

Wi-Fi

onclusion

The University of Oklahoma

Proposed: Multi-shared-band Router

Multi-shared-band Queuing System

Wi-Fi

Multi-shared-band Queuing System with Traffic Types

Scheduling and Analysis

- Scheduling by using FSF^[19], SSF^[19] and LUF
- Analysis of Performance based on Priority Queue Theory^{[16][17[18]}
- Derived formulas are verified by implemented simulation

ntroduction

obiectiv

LTE-A

Wi-Fi

onclusion

Results-Band Utilization

Band Utilization

The packet arrival rate is divided by service rate

Observing effects of lower and higher data traffic loads on band utilization.

higher throughput.

Results-Throughput

The University of Oklahoma

Improvements: Multi-shared-band Router

Improving throughput of multiband by using multi-sharedband up to 23%.

Multi-shared-band

ntroduction

<u>objective</u>

Wi-Fi

objective

- LTE-A
- n Wi-Fi
- Conclusion

Current Multi-band and Proposed Multishared-band Routers: Sub-problem

- Energy consumption is high^{[23][24]}
 - \$27 per year for a router even for stand by^[23] (Ecotricity)

Current Solutions for Sub-problem

- Channel selection based on power consumption by considering QoS^[20].
 - 2.45-2.55 GHz: 5 dB

00

Wi-Fi

onclusion

5.65-5.75 GHz: 10 dB

- Antenna Selection in MIMO^[21]
 - Good for transferring data but not for stand by.
- Wake Sleep Procedure^[22]
 - Small Amount of time in remote device (Not actual router)
- Using small packets^[24]

Husnu S. Narman

The University of Oklahoma

Proposed: Energy Aware Scheduling Algorithm and Queue Management (e-ASA)

- Follows sleep and wake-up procedure of bands
 - Depends on incoming traffic rates and QoS

ntroduction

ective

Wi-Fi

e-ASA Based Multi-shared-band Scenario

Results-Energy and Throughput Ratio

Husnu S. Narman

Improvements: Multi-shared-band Router with e-ASA

Multi-shared-band with e-ASA

Up to 60% energy can be saved by using e-ASA.

Husnu S. Narman

ntroduction

objective

Wi-Fi

onclusion

Summary of Contributions in Wi-Fi

- Multi-class traffic scheduling and queue management for multi-band routers is proposed.
- Energy aware scheduling and queue management is developed for multi-band wireless router.
- Performances of the proposed methods are evaluated according to the queue systems and extensive simulations.

Wi-Fi

nclusion

bjective

- LTE-A
- Ni-Fi
- onclusion

Research papers on multi-band in Wi-Fi

- [7] M. S. Hossain, **H. S. Narman**, and M. Atiquzzaman, "A novel scheduling and queue management scheme for multi-band mobile routers," IEEE International Conference on Communications (ICC), Budapest, Hungary, June 9-13, 2013, pp. 3787-3791.
- [8] **H. S. Narman**, M. S. Hossain, and M. Atiquzzaman, "Multi class traffic analysis of single and multi-band queuing system," IEEE Global Communications Conference (GLOBECOM), Atlanta, GA, Dec 9-13, 2013, pp. 1422 1427.
- [9] **H. S. Narman** and M. Atiquzzaman, "Energy aware scheduling and queue management for next generation Wi-Fi routers," IEEE Wireless Communications and Networking Conference Workshops (WCNCW), New Orleans, LA, Mar 9-12, 2015.
- [10] **H. S. Narman**, M. Hossain, and M. Atiquzzaman, "Management and analysis of multi class traffic in single and multi-band systems," Wireless Personal Communications, Feb 2015.

Conclusion

Extra Research Papers on Cloud Computing

- [11] H. S. Narman, Md. Shohrab Hossain and Mohammed Atiquzzaman: Scheduling Internet of Things Applications in Cloud Computing, (Submitted, Springer Annals of Telecommunication, 2016)
- [12] H. S. Narman, Md. Shohrab Hossain, and Mohammed Atiquzzaman: h-DDSS: Heterogeneous Dynamic Dedicated Servers Scheduling in Cloud Computing, (IEEE ICC 2014 SAC)
- [13] H. S. Narman, Md. Shohrab Hossain, and Mohammed Atiquzzaman: DDSS: Dynamic Dedicated Servers Scheduling for Multi Priority Level Classes in Cloud Computing, (IEEE ICC 2014 NGN)

Thank You

<u>http://hsnarman.oucreate.com/</u> <u>husnu@ou.edu</u>

Husnu S. Narman