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Abstract: Cybersecurity is a complex subject for students to pursue. Hands-on online learning
through labs and simulations can help students become more familiar with the subject at security
classes to pursue cybersecurity education. There are several online tools and simulation platforms for
cybersecurity education. However, those platforms need more constructive feedback mechanisms,
and customizable hands-on exercises for users, or they oversimplify or misrepresent the content. In
this paper, we aim to develop a platform for cybersecurity education that can be used either with a
user interface or command line and provide auto constructive feedback for command line practices.
Moreover, the platform currently has nine levels to practice for different subjects of networking and
cybersecurity and a customizable level to create a customized network structure to test. The difficulty
of objectives increases at each level. Moreover, an automatic feedback mechanism is developed
by using a machine learning model to warn users about their typographical errors while using
the command line to practice. A trial was performed with students completing a survey before
and after using the application to test the effects of auto-feedback on users’ understanding of the
subjects and engagement with the application. The machine learning-based version of the application
has a net increase in the user ratings of almost every survey field, such as user-friendliness and
overall experience.
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1. Introduction

Cybersecurity can be difficult for students to pursue in college, like many other STEM
fields, while there are many factors that contribute to this, one of the primary reasons for
this is the lack of exposure in high school. In 2022, only slightly over 50% of public schools
had computer science education [1]. This lack of pre-college exposure is a major driver of
inequity in computer science [2]. Research has shown that computer sciences have a notably
higher rate of drop-out or major switching compared to other STEM majors [3]. However,
research has also shown that high school computer science education is a predictor of
success in higher education, especially among women, who are notably under-represented
in the current field of computer science [4]. While not a replacement for formal education,
interactive tools can be used to ease students into the subject, as well as allow teachers who
are not explicitly trained in computer science to convey concepts to students [5].

One way to assist with computer science cybersecurity education while also keeping
the program free and accessible is through open educational resources (OER). All OER
resources are available to be used in an education context with no purchase or permission
needed [6]. One type of resource that works exceedingly well as an OER is interactive visual
simulations. Once produced, these simulations can be used repeatedly by any amount of
users to learn about the subjects represented in the simulation.

Previously, we created an interactive program known as “the cybersecurity packet
control simulator” (CSPCS) to teach students about the subjects of cybersecurity, internet
working, and data structures [7,8]. The CSPCS application is based on previous research
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into the use of visual tools for computer science education, which showed that 54% of
students preferred learning about data structures with an interactive augmented reality
(AR) program, as opposed to more traditional methods [8]. Both of these studies are based
on the concept of gamification, which is the act of turning education concepts into a game
format. Research has shown gamification to be effective and preferred by students in an
educational context [9,10].

Moreover, the CSPCS application without an auto-feedback version has been tested
with a group of university students and is generally well received, with students having
a 45% increase in self-evaluated understanding of the topics after using the program, as
well as the overall experience rating averaging out to 3.67/5 [7]. The primary issues users
have with the CSPCS application without an auto-feedback are with the user interface
and explanation of concepts. Based on the feedback we received, we believe the level of
abstraction between the user’s input and the simulation is detrimental to understanding,
while we believe that making the input for the simulation more true to form would improve
students’ understanding of the topics, this also brings several challenges. Using a more
realistic system of input would drastically increase the technical knowledge required to use
the application since that system of input would be text-based. This means that any small
mistake made by the user would cause the input to fail. One way to increase realism while
maintaining the ease of use would be to implement an automatic correction system.

While corrective feedback of any kind is known to assist students in learning, research
has shown that “personalized feedback” correlates with helpfulness [11]. In [11], a number
of different feedback modes were tested with students. The results show that digital
feedback modes that were assessed as personalized were also assessed as more helpful,
such as electronic annotations. Faculty resources are often limited, preventing instructors
from being able to always provide manually personalized feedback. However, machine
learning technologies can be used to replicate some facets of personalized feedback, such
as informing the user what specific portion they are mistaken on.

There are other online platforms to explain cybersecurity and internetworking subjects.
One of the well-known tools for cybersecurity and internetworking education is Cisco
Systems Networking Academy (CSNA) [12]. CSNA is a more advanced platform that
has beginner to advanced classes that are led by instructors in-person or in an online
environment. CSNA is incredibly comprehensive, with hours of coursework; however, due
to this, it can be overwhelming for less-experienced users. However, due to its complexity,
it is not ideal for high school or inexperienced university students, who may find it difficult
to approach. With this project, we aim to develop a tool primarily catered to students. The
scope of this application is designed such that it can be used to help students visualize the
core idea before continuing with more comprehensive instruction.

The objective of this paper is to develop a machine learning-based auto-feedback
system over our previously developed application [7]. The key contributions of this paper
is (i) the implementation of the application based on auto-feedback and console features—
https://pws-cspcs-preview.herokuapp.com/ (accessed on 22 November 2022), (ii) the
development of the machine learning model to provide feedback, (iii) carrying on field
testing, and (iv) comparing the machine learning-based feedback (ML) and non-feedback
(non-ML) versions based on our gathered data and users’ feedback. The main way we
implemented this auto-feedback mechanism has been to improve the quality and realism
of the input system. The increase in complexity caused by the text input system can be
mitigated by using a system to correct user mistakes. This is performed by using machine
learning (ML) in the application. If the user inputs an invalid command into the application,
that command is then given to the ML model, which predicts what command the user most
likely intended. This, combined with several manual feedback systems, provides the user
with guidance upon making a common mistake, allowing them to have a more realistic
experience while still being intuitive and easy to use.

The trial results of the ML version compare favourably over the non-ML version, with
the most notable data point being an increase in the average overall experience (3.7 out of 5
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for the non-ML version and 4.1 out of 5 for the ML version). It should be acknowledged that
this trial has been performed primarily with second-year and beyond university students,
and the program could be expanded to be more suitable for different audiences, such as
high school students.

The rest of the paper is organized as follows: Section 2 describes the development
process of the application. Section 3 describes the selection of the Machine Learning
model. Section 4 explains the implementation of the application, as well as the machine
learning development and implementation. Section 5 compares the results of the trial of
the non-ML version of the application compared to the ML version. Section 6 discusses our
explanations and comments on the results. Finally, Section 7 presents concluding remarks
with future works.

2. Application Development
2.1. Background

The application discussed in this paper is an updated version of an application de-
veloped to teach late high school and early university students about cybersecurity and
internetworking concepts. The application provides users with a series of levels where
the user would control how bundles of information or “packets” were routed between
devices in a simulated network. These levels would have the user learn about topics such
as routing, weighted graphs, algorithms, pinging, and a cybersecurity attack known as the
“man in the middle” [13–21]. All of these levels remain in the second version which we
called as ML version of the application and were improved to more intuitively convey the
ideas being taught.

2.2. Differences between the Non-Machine Learning and Machine Learning Versions

The non-machine learning (non-ML) version of the application uses Unity 3D for the
framework and WebGL for web support [22–25]. This website is publicly hosted using
Heroku [26,27]. Unity is a popular tool often used for game development, but it also has
usage in animation and simulations. Its innate support for web browsers through WebGL
build support made Unity ideal [22–25]. Additionally, Unity supports mobile without
having to completely rebuild the project, allowing for easy continuation of this project. The
non-ML version of this application is designed to convey the ideas of cybersecurity and
routing, but to streamline the system of input to simple buttons. For the machine learning
(ML) version, we decided to move away from simplified input to make the simulation
more realistic. Because of this, we decided to make the new system of input the default,
while still giving the user the option to enable the old input system if they prefer it. For
this paper, we will only be discussing the functionality of the new command line system of
input. Details about the button-based system of input can be found in [7].

2.3. Terminal Input

The system of input for the ML version is modelled as similar to the Windows com-
mand line. As such, the user controls the simulation almost completely through text input,
with only a few UI elements were added when necessary. Changes had to be made to the
currently existing level to make them compatible with this new input system. Primarily, the
levels are set up so the home device and 127.0.0.1 is always the device sending packets since
the terminal input is supposed to represent the command line of one specific computer,
while the user input system is based on a publicly available tutorial, the internal processing
and integration with the ML model is a custom implementation and is discussed in detail
in Section 4.

3. Machine Learning Algorithm Selection
3.1. Python Model Analysis

An important step of this project was to evaluate multiple different forms of machine
learning models and decide which would be optimal for this implementation. Previous
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research has been performed in which different types of machine learning models are con-
currently compared. In an example, Ref. [28] by Modaresi et al. compared several different
types of machine learning for predicting inflow into the Karhkeh reservoir. Similarly, for
this paper, we test a number of different machine learning algorithms for our dataset of
available commands and possible typos. The first are “logistic regression” and “Gaussian
naive Bayes (NB)”, which fit data to a curve. The next models are support vector classifiers
(SVC), which is a method that uses a line, plane, or even hyperplane to bisect and classify
data. This includes “kernalized SVC” and “linear SVC”. “K-neighbours” classifies data
by distance from other data points. “Perceptron” and “multi-layer perceptron (MLP)” are
artificial neural networks (ANN), which are composed of several input and output layers
that allow for prediction [28]. Finally, “matching” is a non-machine learning technique that
uses Levenshtein distance to find the possible matching.

3.2. Analysis Methodology

To perform this analysis, we developed two programs that are based on the sci-kit
learn library and its implementation of the algorithms mentioned in Section 3.1 [29]. The
main difference between the two programs is the use of optimization according to feature
extractions from the dataset. This dataset is composed of scrambled and misspelled words,
with the labels being the correctly spelled version of those words, as explained in Section 4.5.
For example, “msg” is the label, and “mgsasa” is the randomly generated typo based on
the label. In the optimized version, Levenshtein distance, the unique number of characters,
and the rate of matched character count in each position are used for feature extraction.

3.3. Analysis Results

Figures 1–3 display the accuracy, F1 score, and prediction time of the unoptimized
models while Figures 4–6 display the accuracy, F1 score, and prediction time of the opti-
mized models.

Figure 1. The accuracy of ML prediction compared to actual values for unoptimized models.
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Figure 2. The F1 score of unoptimized models.

Figure 3. The time of prediction for unoptimized models, in seconds.

Figure 4. The accuracy of ML prediction compared to actual values for optimized models.
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Figure 5. The F1 score of optimized models.

Figure 6. The time of prediction for optimized models, in seconds.

Figures 1 and 2 show that matching based on Levenshtein distance performs by far
the best while unoptimized, while Figures 4 and 5 show that all models performed well
after optimization. It is important to note that K-neighbours shows the best performance
compared to the other machine learning models in the unoptimized version. As shown in
Figures 3 and 6, the matching based on Levenshtein distance takes significantly more time.

Similarly, MLP takes significantly longer than all other forms of the machine learning
models tested in both unoptimized and optimized versions because MLP is an ANN with
several layers. Previous research has shown that while models such as K-neighbours may be
more efficient for linear data, for more scattered data, ANNs often perform more accurately,
with the converse being true as well [28]. Our data from these unit tests show that for the
type of data, most types of machine learning models are able to perform adequately. In the
end, the model was primarily selected due to language compatibility reasons.

3.4. TensorflowJS

While many powerful frameworks for machine learning exist, the chosen framework
for this application is TensorflowJS [30]. As we are building upon a pre-established ap-
plication, the machine learning model chosen would ideally be able to integrate into the
application with minimal changes necessary. Since the application uses C# for Unity and
Javascript (JS) for WebGL, it is necessary that the machine learning model be compatible
with both languages [22–25]. Fortunately, Unity has the innate compatibility for communi-
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cation between JS and C#, so as long as a JS-compatible machine learning model could be
found, it would be integrated into the application. TensorflowJS is a JS spin-off of the popu-
lar and versatile Python machine learning library Tensorflow [31]. By using this framework,
we would have access to the layer-based ML models of Tensorflow, which would allow us
to train our own custom-made ML model [30]. This custom model is capable of reading a
typographical error up to 10 characters long and predicting what command it is intended
to be using pattern recognition.

4. Implementation
4.1. Resolution Improvements

One of the more impactful changes for user experience is the improvement in reso-
lution and scaling. In the non-ML version, the application would only take up a portion
of the website. However, through the use of a modified HTML template under the MIT
license, the application scales dynamically to fit the size of the window [32].

4.2. Settings and Cookies

With the update to the input system, we want to provide users with an option to disable
these features in case they prefer the old version of the application. This is performed
through the use of the settings screen. Users can enable or disable both the command line
interface and the machine learning system from the settings. Additionally, this application
uses cookies to save the users’ settings if they leave the page [33,34]. To respect the privacy
of the user, there is a banner notification to inform the user about the website’s usage of
cookies, as shown in Figure 7.

Figure 7. The settings page and cookies notification.

4.3. Command Line and Tools

Figure 8 shows the implementation of the command line interface (CLI), as well as
various tools for controlling the simulation. Relevant elements are marked with large red
numbers. Element 1 is the selection panel, which allows the user to swap between the
objective, question, help, and tools panels. With the exception of the tools panel, a new
addition, the other three panels remain unchanged from the non-ML version. Element 2
is terminal. The user can select the terminal and type in a command to influence the
simulation. The list of recognized commands and their functionality is explained in the
next subsection. Element 3 is the pause button. This button freezes the simulation in
place, allowing the user more time to evaluate what is occurring. Finally, element 4 is the
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eyedropper button. The user can click on this button and then click on a device in the
simulation, and the IP address listed below that device will be copied into the terminal.

Figure 8. The command line interface and tools panel.

4.4. Text Processing and Tokenization

Before the user’s input can be processed by the program, it first needs to be tokenized.
Tokenization is the process of breaking text into distinct words or phrases, known as
tokens [35]. This is performed by identifying groups of characters as words or phrases and
then identifying the meaning of those tokens. For this application, tokens are mostly words,
so they can be detected by breaking the input string up by spaces. This allows most of the
words to be easily isolated into tokens; however, because there are circumstances where
more than one word can be put into a token, an exception must be added. The tokenizer
ignores spaces that are between two quotes, meaning that any phrase in quotation marks is
treated as a single token. For simplicity’s sake, the application is not case-sensitive, and
will internally convert every letter to lowercase.

The next step is to discern the meaning of these tokens. The tokenizer accepts the
input as a list of tokens and categorizes each token using a set of criteria. There are over
10 different categories of tokens, but all of these fall into one of three super categories:
commands, variables, or errors. “Commands” represent the name of a terminal command.
The tokenizer only recognizes the commands if they match the name exactly. Each of these
commands represent a real Windows terminal command that is relevant for cybersecurity
and networking. These commands represent the functionality of the actual command
but are slightly modified to fit the introductory scope of the application. Some of the
more complicated parameters of these commands are either simplified or removed. The
commands utilized are: MSG, PING, TRACERT, ROUTE, PKTMON, CLS, and HELP [36].
MSG sends a packet containing a string message [37,38]. PING sends a packet which
causes the destination device to return a packet back. TRACERT pings every device
en route to an end destination. ROUTE displays the routing table of any given device.
PKTMON shows a log of every packet a device has received. CLS empties the terminal
of all text. HELP displays information about each of the commands. “Variables” are for
processing miscellaneous data necessary for commands. This includes numbers, quotes,
and IP addresses. Since there are several different values that can be considered valid input
for these tokens, they each have specific criteria for identification. “Errors” are for handling
incorrect inputs. There are two types of error tokens, unknown and invalid. A token is
marked as unknown if the token cannot identify it as anything else. Any token that is
marked as unknown, is first checked for specific errors, such as if it is a packet message
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that is not in quotes. Otherwise, it is sent to the machine learning model for prediction and
automatic feedback. Invalid tokens occur when a token is recognized but does not meet
the requirements for the command to execute. The most common example is if a valid IP
address is provided, but there is no device that exists with that IP address.

The final step is syntax analysis after each token is recognized. In this step, the
list of tokens is compared with the requirements for each command, to identify which
command should be executed. A major challenge faced during the design step was how
to handle optional parameters. Optional parameters affect a command’s functionality,
but the command still executes if they are excluded. To address this, each parameter in a
command’s requirements list is either marked as optional or mandatory. If a mandatory
parameter is missing, the input is considered invalid for this command, and it moves to
compare it with the next command. However, if the parameter is optional, the tokenizer
continues to compare the input with the command’s requirements. If the input totally
matches a command’s requirement list, it executes the code associated with that command.
If not, it compares the input with the next command in the list. If the input matches none
of the commands, it is marked as invalid, and an error is displayed.

4.5. Natural Language Processing

In the case that a token is marked as unknown and does not trigger any specific
feedback, it is assumed to be a typographical error. In a normal command line, this
would result in a generic error message. However, we provide specific feedback whenever
possible. In order to provide this feedback, we use a specific type of machine learning
known as natural language processing (NLP). NLP is specially designed for processing
words in natural languages, such as English, and it can be used to find misspellings and
typographical errors. To do this, we trained a custom TensorflowJS model to classify the
type of commands. The first step in this process is to find the list of Windows commands
and then select the ones appropriate for the application [36]. Next, we create our dataset.
The type of machine learning employed in this project is known as “supervised learning”,
which is categorized by its usage of labelled data for training. A dataset is labelled when
there is also a label for each data point that categorizes it [39,40]. In this case, the data is
the typographical error or misspelling of a command, and the label is the correct spelling.
When the model is trained, it uses these labels and attempts to predict what label any
given input corresponds to. For supervised learning to work, we needed to gather a large
amount of labelled data. To accomplish this, we used a modified version of a typographical
error-generating algorithm [41]. The main change we made to this algorithm was to modify
it to prevent duplicate data from being generated.

Once the dataset is generated, we create a program to generate the machine learning
model. Creating models in TensorflowJS is based on the Keras layers framework, which
passes training data through several layers to improve results [42,43]. The model is pri-
marily composed of long short-term memory (LSTM) layers. These LSTM layers are used
for their ability to output a predicted sequence of data [44,45]. TensorflowJS is primarily
designed to predict numerical data, particularly numerical data between zero and one.
Because of this, we need to encode our text data into binary, using a method known as
“one hot encoding”. This method turns each individual character into an array of binary
values [46,47]. As we are working with character data, this conducted by having each
character turned into an array of length equal to the number of recognized characters. Since
we are using just the lowercase alphabet and blank space, this length is equal to 27. We are
able to identify the character by checking what index the “one” is at, as every other value
will be set to zero.

This process is repeated for each letter in the word and then repeated for each word in
the dataset, making the input data into the model a three-dimensional binary array. Since
LSTM returns a sequence, the output is also a three-dimensional binary array, but instead
of being composed of 26 zeros and 1 one, it is instead composed of 27 values from zero to
one. To convert this data to text, we reverse the encoding process with one key difference.



Sensors 2023, 23, 2977 10 of 15

Instead of identifying the letter by the index of the one in the array, we instead find the
index of the largest value. When this process is complete, the model will have outputted a
text sequence. The final step is to compare this sequence with the known commands. If the
first few characters of any command match the sequence, it will be marked as a successful
prediction, and it will return the predicted value. Otherwise, it will return “unknown”. The
model uses sequence output instead of raw categorization in order to make false positives
less common, as it will return “unknown” if it has no prediction it is confident enough in.

Once the model is finished training, it is exported to a file that can be quickly loaded
by the website. Training a machine learning model can take upwards of several hours. By
having the model pre-trained and exported to a file, the application can load and use it in
mere seconds. With the machine learning model, the user’s mistakes are identified and
feedback is provided without the need for an instructor, as shown in Figure 9.

Figure 9. The machine learning system providing automatic feedback.

5. Results

In order to measure the effectiveness of the program, the non-ML application was
tested with a group of approximately 30 college students in computer science or computer
science adjacent fields [7]. These students were tasked with completing a pre-survey, using
the application, and then completing a post-survey. The questions asked of the pre-survey
are as follows: student email, major/class rank, computer science section in which the
survey was administered, self-described learning style (i.e., visual, kinetic), understanding
on cybersecurity, computer networks, and routing on a scale from 1 to 5 (1 being the
least, 5 being the most), and any other programs they had used to learn about similar
topics. Students were then asked to complete the six implemented levels and fill out a
post-survey after completing them. The questions asked in the post-survey were as follows:
student email, major/class rank, computer science section, a short five question quiz on
concepts taught in the application, a re-scoring of understanding from 1 to 5 on each concept
covered, and then a set of qualitative questions about users’ opinions on the application.
These qualitative questions covered: concepts that they thought were explained well and
those that were not explained well, concepts that were interesting, understanding of the
program’s purpose, opinions on user-friendliness, opinions on educational benefits, interest
in using an improved version of the program, uniqueness compared to other programs,
general suggestions, and overall opinion of the application [48,49].

All of these results from the non-ML application were evaluated and used to enhance
the application [50]. After the application had been completed, a second trial was initiated
to evaluate what impact the changes had on effectiveness. In order to make the data from
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the two trials more comparable, no questions from the original survey were changed, with
the only difference being a few brief questions on the new features [48,49,51,52].

The comparison of user trials of the non-ML and ML versions of the application
shows a net increase in almost every facet of the application, with user-friendliness and
understanding of computer networks. The first quantitative metric that the two applications
are compared on is the student’s self-rated understanding of the subjects being taught.

The average final scores for understanding in the non-ML application were: cyberse-
curity (3.5/5), networking (3.0/5), and routing (3.1/5) [49]. In the ML version, the average
scores were: cybersecurity (3.2/5), networking (3.7/5), and routing (3.3/5), as shown in
Figure 10. These results demonstrate a slight decrease in cybersecurity understanding,
a large increase in networking, and a slight increase in routing [52]. This seems counter-
intuitive at first, as the ML version of the application increased the number of cybersecurity
concepts. However, it is likely that there is a comparatively larger increase in networking
concepts, causing students to view the application primarily as a tool for networking
concepts. Additionally, the command line interface may have been more conducive to
teaching networking concepts than cybersecurity.

Figure 10. Comparison of self-rated understanding between two versions of the application.

Additionally, students were asked to rate the program from 1 to 5 on several qualitative
metrics, as shown in Figure 11. Almost every one of these average metrics was improved in
the trial of the ML application compared to the non-ML. Students’ average understanding
of the program’s purpose increased from (3.8/5) to (4.1/5). The average user friendliness
increased precipitously from (3.2/5) to (4.1/5). Students’ rating of the educational benefits
increased from (4.0/5) to (4.2/5). The uniqueness of the program on average increased
from (3.9/5) to (4.0/5). Finally, the overall rating increased from (3.7/5) to (4.1/5). The only
metric that decreased was interest in using an improved version of the application from
(4.0/5) to (3.9/5) [49,52]. The most notable increase was in user friendliness. We believe
that the extra attention given to the UI, particularly the interactive terminal, accounted for
this increase. Almost every category measured exceeded (4/5), with the only exception
being interest in using the program again, meaning we have achieved our primary goal
for a revision to the application. We believe that this decrease may have been due to the
extended length, as it being longer may have resulted in users not feeling a need to use it
any further after completing the whole thng.
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Figure 11. Comparision of review scores between two versions of the application.

Finally, students were asked to rate their opinions on the new additions in this version
of the application, primarily the text-based input and the machine learning-based correc-
tions. Users rated their opinion on the text-based input as (4.2/5), and the helpfulness of
the machine learning auto-correction as (3.6/5) [52], as shown in Figure 12. This shows
while the text input system is widely appreciated, the auto-correct system is seen as less
important. One rationale for this is that for users that did not make any mistakes in the text
input system, the correct system would have been unnecessary for them. Additionally, the
program is only trained to correct typographical errors and had no capacity to automatically
detect syntax errors. We believe that a machine learning system that could correct and
explain syntax errors would be drastically more helpful. We are planning to implement
such functionalities in the future.

Figure 12. Evaluation of command line and auto-correction feature.

6. Discussion

While the surveys used for the trials were almost entirely unchanged, there were
some possible imperfections that must be acknowledged. In the non-ML trial, a portion
of the survey was focused on measuring the user’s self-described learning style and then
comparing these results to the user’s results on a short content quiz. On further analysis,
these metrics have some imperfections that make them less useful for evaluating the
effectiveness of the program. The non-ML trial demonstrated no significant difference
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between user evaluation results correlating learning style. This is supported by recent
research, which states the concept of distinct learning style categories that students clearly
fall into is inaccurate [53]. Additionally, there are a few imperfections with the trial itself,
primarily the number of questions and the questions themselves. Students were asked to
answer five multiple-choice questions relating to the content presented in the application.
Due to the low number of questions, a single incorrect answer would result in a decrease
in that student’s score of 20%. This also meant that due to the relatively small sample
size of around 30 testers, any student who did particularly poorly would heavily affect
the average. In the second trial, the average evaluation score was around 70%, far lower
than the 90% in the first trial. This decrease cannot solely be blamed on statistical outliers,
however, as there are many possible explanations for the decrease. In order to properly
compare evaluation results, the questions were unchanged between the two versions of
the application. However, the ML version of the application is significantly expanded,
with new concepts introduced and several of the old levels reworked. Because of this, the
evaluation designed for the non-ML application is not optimal for the ML version [49,52].
Additionally, for brevity, users were only asked to complete five of the ten available levels,
meaning it is possible that a user may have skipped a level that is asked about on the
evaluation. This could have been remedied by specifically assigning five levels out of the
ten that all users must complete.

7. Conclusions and Future Works

In this paper, we develop a platform for cybersecurity and networking education that
can be used either with a user interface or command line and provide auto constructive
feedback for the command line practices. We are partially interested in the observed
users’ experiences on the machine learning-based auto-feedback version and non-machine
learning version of the application. The field trials of the application demonstrated an
increase in the majority of metrics covered by the survey, with a small portion of the metrics
decreasing due to the survey not accounting for a shift in direction for the machine learning-
based auto-feedback version of the application. The machine learning-based auto-feedback
version of the application met the projected goal of increasing both the user-friendliness
and overall experience to over (4.0/5) [52].

The primary goal of any future work on this project would be to improve user ac-
cessibility. Currently, the application is only available on computers that support WebGL,
meaning that a person who only has a mobile device or an older computer cannot use the
application. We believe that porting this application to mobile platforms would drastically
improve the reach of the tool, especially amongst students who lack computers. For any
future additions, we would likely include more guided instruction for the students in
order to introduce students to the concepts before asking them to use the application. Our
main approach to doing this would be to embed a brief training video on the application’s
website, while this is primarily an interactive medium, we believe that some guided instruc-
tion may improve understanding, especially by clearing up common misunderstandings.
Additionally, we plan to implement several accessibility changes, such as more language
options or a mode for visually impaired or colour blind users. These changes would
help accommodate students who may have traditionally been disadvantaged in computer
science education.
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