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ABSTRACT In this paper, we present a distributed classification technique for big data by efficiently
using distributed storage architecture and data processing units of a cluster. While handling such large
data, the existing approaches consider specific data partitioning techniques which demand complete data
be processed before partitioning. This leads to an excessive overhead of high computation and data
communication. The proposed method does not require any pre-structured data partitioning technique and
is also adaptive to big data mining tools. We hypothesize that an effective aggregation of the information
generated from data partitions by subprocesses of the complete learning process can lead to accurate
prediction results while reducing the overall time complexity. We build three SVM based classifiers,
namely one phase voting SVM (1PVSVM), two phase voting SVM (2PVSVM), and similarity based SVM
(SIMSVM). Each of these classifiers utilizes the support vectors as the local information to construct the
synthesized learner for efficiently reducing the training time and ensuring minimal communication between
processing units. In this context, an extensive empirical analysis demonstrates the effectiveness of our
classifiers when compared to other existing approaches on several benchmark datasets. However, among
existing methods and three of our proposed (1PVSVM, 2PVSIM, and SIMSVM) methods, SIMSVM is
the most efficient. Considering MNIST dataset, SIMSVM achieves an average speedup ratio of 0.78 and
minimum scalability of 73% when the data size is scaled up to 10 times. It also retains high accuracy (99%)
similar to centralized approaches.

INDEX TERMS Distributed learning, Large datasets, SVM, Classification, Distributed processing,
Distributed storage

I. INTRODUCTION

Support vector machine (SVM) works on the principle of
maximizing the margin between two classes using a seg-
regating hyperplane [1]. Maximization of margin is an op-
timization problem which is solved applying the quadratic
programming (QP) problems subject to linear constraints.
The support vectors of one class act as its representatives
and are used as boundary points for margin maximization
from support vectors of other classes. SVM is extensively
used to solve several real world problems [2][3][4][5] , such
as face and object detection, fault prediction, handwriting
recognition, image segmentation, protein fold and remote
homology detection, e-learning, intrusion detection, speech

recognition, and so on [6] through classification and regres-
sion analysis for low to average volume datasets. However, it
is still challenging for SVM to deal with big data or large
datasets [7], like, consider the associated challenges when
SVM handles a large dataset:

Challenge 1. Large dataset:
Training time of standard SVM is O(N3) and space com-

plexity is O(N2), where, N is the number of training data
points. Therefore, it is an obvious challenge when SVM is
trained for large datasets [8]. A distributed approach can help
in overcoming these challenges by distributing the training
task over parallel processing units as shown in Fig. 1.

Challenge 2. Distributed modeling:
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FIGURE 1: An overview of distributed learning and chal-
lenges associated while handling large datasets.

Distributed solutions like MapReduce [9], Spark [10],
Flink [11], etc. are widely adopted to provide efficient solu-
tions for big data analytics [12]. The overall upshot of these
solutions is that multiple processing units are working in par-
allel over a distributed storage of data. The inherent challenge
in using such solutions is the modeling of complete data
analysis problem into subproblems with minimum dependen-
cies among them. High independence among subproblems
results in high scalability and speedup of the overall process.
The optimization, done for margin maximization in SVM, is
not suitable for such models because of high dependencies
between their parameters [1].

Challenge 3. Data preparation:
Though the above mentioned distributed solutions are

available to process large data up to a satisfactory level, the
data first requires an efficient pre-processing before it is par-
titioned as shown in Fig.1. Performing pre-processing over
complete data or independent subsets of the large volume
data is again a challenge [13] in terms of computational
cost and memory requirements, for example, performing
a pre-clustering of the data before applying the prediction
algorithm.

Challenge 4. Data transmission:
Efficient modeling of the complete analysis process into

subproblems depends on the independence among the sub-
problems. The challenge is to reduce the transmission
[14][15] of data to the subproblems, and between the sub-
problems.

The solution is to model the complete learning process
over a large dataset into a distributed pipeline scenario in
which results from independently and distributively running
learners are used to generate the final learning results. The
advantage achieved by this type of solution is a reduction
in time complexity because of the distribution of data pro-
cessing over a cluster. Here, cluster is a set of nodes where
each node contains a processing unit and a distributed storage
space.

Revisiting all the above mentioned challenges, in this pa-
per, we propose three different solutions for distributed learn-
ing using SVM: i) one phase voting SVM (1PVSVM), ii) two
phase voting SVM (2PVSVM), and iii) similarity based SVM
(SIMSVM) for performing classification over large datasets.
Each of the proposed schemes considers that data is dis-
tributed over a distributed space in form of blocks or chunks.
We design our approaches to accommodate the cluster com-
puting scenario where some blocks are locally available to
the processing units. The complete proposed model consists
of 4 phases; each phase maintains total independence among
the parallel executing subproblems by ensuring no data or
information exchange among them. An effective intermediate
result aggregation scheme is also proposed to aggregate the
results of subproblems. This aggregation further guarantees
that there are no anomalies in the final aggregated result
using a deduplication method. Further, our approaches do not
require any specific data partitioning scheme and is adaptive
to commonly used distributed storage solution like Hadoop
Distributed File System (HDFS).

Contributions: Some of the key features of the proposed
distributed and scalable approaches are as follows:
• The approaches allow random data partitioning, i.e.,

these approaches do not require specific partitioning
technique to be applied before distributing data over a
distributed storage.

• It can handle a large amount of data by efficiently
dividing the learning process over the disjoint subsets
of data.

• Three distributed solutions, namely, 1PVSVM, 2PVSVM,
and SIMSVM are proposed to train the classifier using
linear and non-linear kernels. The techniques have the
same accuracy as the native SVM. Moreover, the tech-
niques show a good amount of speedup and are highly
scalable with low training time.

• The methods are instinctively adaptive to clustered or
cloud solutions for large data analysis.

• No exchange of data is required between two distributed
components resulting in low communication overhead.

Roadmap: The immediate section II demonstrates the
need of support vector machine to handle large datasets. The
overall description of the proposed approaches is described
in section III where section IV explains how to handle
multiclass classification problem through the proposed ap-
proaches. The ensuring section V comprises the experimental
results and analysis on several benchmark datasets to validate
the efficacy of the proposed approaches. Section VI indi-
cates some key observations from this research work with
some important research implications. Finally, section VII
concludes the paper with the final remarks.

II. SVM FOR LARGE DATASETS
SVM is one of the most efficient ways of classification based
on statistical learning theory and thereby is applied to sev-
eral applications [16] of binary classification and regression
analysis. However, there are certain challenges of applying
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SVM over large datasets. Targeting these challenges, ample
research has been conducted in recent years [17], [18], [19],
[20], [21].

To apply SVM over large datasets for big data analyt-
ics, the available approaches can be broadly classified into
three prominent categories. First category emphasizes on
efficiently optimizing the margin maximization problem.
These approaches do not achieve much speedup and scala-
bility required for large datasets. [22] suggested decreasing
the running time of quadratic programming solver which
is used in SVM for optimization by shrinking and caching
mechanism. The running time of this quadratic programming
can also be decreased by solving the quadratic optimization
problem matrix in a distributed manner by dividing it into
smaller problems [23], and then combining the results of
these problems. However, these approaches lack learning
from large datasets due to their less adaptability to distributed
modeling as the submodules generated from the complete
learning process are not independent of each other. In con-
trast, our proposed approaches assure significant indepen-
dence among the submodules of the learning process by
efficiently employing the local learners on a subset of data.
Moreover, reducing the number of data points for margin
maximization can also decrease the overall training time.
Based on this observation, [24] proposed a sampling-based
technique, in which, some active points (near to support
vectors) are selected instead of using the complete dataset
for margin maximization. Selection of active points in case of
non-linearly separable multiclass data is difficult, on the other
hand, our proposed approaches do not require any predefined
sampling technique.

The second class of approaches adeptly utilize the kernel
function to reduce the overall training time as the kernels
are used for distance calculation and are the essential part
of margin maximization process. Here, kernel executions are
performed in parallel or by using high performance systems
like GPU. [25] suggested breaking the kernel function used
for distance calculation into smaller computing blocks which
can be solved in parallel by executing concurrent threads
for each block. Choosing an appropriate kernel function can
also reduce the overall training time; this concept is used
by [26] in their proposed kernel selection method which
selects a best suited kernel function for a given dataset and
then SVM is applied using that kernel method. Generation
of computing blocks and kernel selection require a pre-scan
of the data. Further, these approaches are not suitable for
a distributed storage of data. In the proposed solutions, the
kernel function is integrated with each submodule of the
learning process which performs the learning task over a
subset of the data. This process automatically distributes the
computation overhead of the kernel function over different
submodules.

To further optimize the distance margin maximization
process, framed inputs are provided to the SVM. This results
in the third type of techniques. In this type of approaches,
initially, clustering of the complete dataset is performed and

then SVM is applied on the clustered data. The training
time can be diminished by performing the division of data
such that a pre-clustered data is present in each partition
and is used as an input to the classifier for classification.
In a distributed manner, different clustering algorithms can
be applied such as k-means which divides the data into
k clusters [27] before feeding the data into SVM. CSVM
[28] uses k-means algorithm to classify the big data into
k independent clusters. Then learning is performed using
weighted local SVMs trained in the cluster. To reduce the
communication cost, communication avoiding support vector
machine (CASVM) [29] uses a balanced k-means clustering
to reduce the data communication. This technique performs
better when the data is non-overlapping and performance de-
grades for overlapping datasets. Another approach, DTSVM
[30], applies decision tree algorithms to classify the large
data into k disjoint regions (tree leaves). A local SVM is used
to classify the regions having heterogeneous points (in con-
text of class labels). So, for any test point, first, decision tree
is used to select the appropriate region and then, SVM is used
for final class prediction. Using decision tree algorithm, [31]
suggested a classification method that identifies low entropy
data regions. Later, Fisher’s linear discriminant is applied to
reduce the overall data by only selecting data from decision
tree boundaries. This reduced data is further used by SVM
for generation of the separating planes. [32] [33] proposed a
distributed SVM approach which is a combination of k local
SVMs. The complete data is partitioned into k-clusters and
local SVMs are applied over each cluster of the data. A differ-
ence in[33] approach is that it follows a balanced clustering
method for load balancing among the subproblems. One vital
issue with this third category is that these methods require
pre-clustering of the complete data that means complete data
must be present at one place which in turn increases the
complexity of the overall process. However, our proposed
methods do not have such centralized data requirement and
thus, can save such data preparation time.

III. DETAILED DESCRIPTION OF PROPOSED
APPROACHES
Problem Statement: Large datasets are often stored in
small-sized partitions over a distributed storage. Removal of
the overhead of any special partitioning, which preserves the
centrality of data over a distributed storage, is a challenge
for large data mining. This work addresses the challenges
in extracting the relevant information from randomly parti-
tioned dataset subsets and performing the aggregation of this
information without any duplication to generate the complete
information for classification while maintaining the accuracy
and minimizing the training time.

Foundation: The basis of the proposed approaches is that
SVM aims to find the data points belonging to different
classes that are the nearest to one another. These data points
on the gutter determine the support vectors. The support
vectors determine the maximum margin between the classes
and define the decision boundary in SVM. It can be observed
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that data points on the gutter that do not define the decision
boundary and those data points that are far from the decision
boundary do not contribute to the separating hyperplane. For
large datasets, this entails that data partitioning based on
distribution preserving sampling does not help as only data
points near the decision boundaries are important. Trivial
partitioning of a dataset can suffice. Moreover, only support
vectors for each partitioned dataset subset are required for
finding the final support vectors that define the decision
boundary for the original dataset. The extraction of support
vectors from each partitioned dataset subset is independent
of each other. Hence, no communication is required between
different processing units running SVM. This provides the
notion to design our classification model.

Design: The complete dataset is partitioned into a number
of subsets using data partitioning. Each subset of data is
considered located on different machines, and it is expedient
to be processed locally. Apparently, higher independence
among local processing modules results in higher scalability
in the overall learning process. On the whole, the goal of our
intended approach is to execute independent learners over
slave nodes in a cluster, and develop a synthesized learner
using a distributed pool as a storage area.

• Independent learner: It processes an available partition
Di from the data and produces intermediate leaning
results. The learning process is independent of both the
other partitions and other learners.

• Synthesized learner: A collection of potential indepen-
dent learners together form a synthesized learner, which
integrates the results from independent learners to yield
the final learning results.

• Cluster: It is combination of processing nodes which
have access to a distributed file system and are con-
nected through a network switch.

• Distributed pool: It is a shared distributed space avail-
able to all the nodes in the cluster.

• Slave nodes: Independent processing units of the cluster
or simply nodes of the cluster having processing and
storage capability. Virtually distributed pool is a com-
bined form of slave nodes’ storage space (like in HDFS).

Our proposed prediction model is an ensemble of indepen-
dent learners, which is pertinent enough for a distributed pro-
cessing and storage environment. The entire learning process
is instrumented using parallel independent learners which are
applied to each block of data in order to extract intermediate
results. The synthesized learning is performed over a cluster
where each independent learner works as a slave process that
utilizes the processing capability of a node in the cluster.
This approach is adaptable to several big data processing
frameworks like Hadoop MapReduce, Spark, etc. The overall
approach is divided into four phases:

• Data partitioning
• Distributed intermediate information generation from

different data partitions
• Information aggregation and deduplication process

FIGURE 2: Four-phased proposed model.

• Final classifier generation
-- One phase voting SVM (1PVSVM)
-- Two phase voting SVM (2PVSVM)
-- Similarity based SVM (SIMSVM)

The four phases as shown in Fig. 2, the first phase is data
partitioning in which complete data is divided intom subsets.
The second phase is executed separately over each partition
or a collection of partitions of data. The partitioned data is
used to generate the intermediate results in form of support
vectors which are compressed boundary points for class
labeling. In the third phase, the aggregation of the results
generated in second phase is performed using a deduplica-
tion process which removes the duplicate results. Finally,
the fourth phase is executed to develop the three types of
classifier either by applying any voting scheme (one phase, or
two phase) or by applying similarity based approach. Table 1
depicts some commonly used notations in the paper.

A. FIRST PHASE: DATASET PARTITION

One of the core challenges with large datasets is that, it
is hard to process the complete data in a single iteration
because of limited storage and processing power of a sys-
tem. Therefore, data partitioning is an effective way to deal
with such massive datasets. In our approach, the complete
dataset D is divided into m small blocks/data chunks as
{D1, D2, ..., Dm} and stored over a distributed storage. The
analysis over this distributed data mimics a non-uniform
sampling process. The entire dataset D is given by:

D =
{(
xi, yi

)}N
(1)
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FIGURE 3: Distribution of classes over different subsets of
MNIST dataset.

FIGURE 4: Separator function generates support vectors for
each combination of the classes in phase 1.

Where, xi is the ith feature vector and yi is its class label, the
division of D in m non-overlapping subset is expressed as:

Dj =
{(
xi, yi

)}Nj
; j = 1 to m (2)

Where, Nj is the sample size for jth partition. However,
disjoint sets yield a smaller number of data partitions. So, any
random partition of the data can contain a random number of
instances of different classes. Thus, the distribution of data is
adaptive to real time distributed data processing techniques
[10][34]. For example, applying this data partitioning tech-
nique over MNIST [35] dataset, when divided among five
blocks, shows an imbalanced distribution of classes over each
subset as shown in Fig. 3. Each of these blocks is processed in
a distributed manner using proposed approaches to generate
the final results.

B. SECOND PHASE: DISTRIBUTED INTERMEDIATE
INFORMATION GENERATION
Each independent learner performs this phase and takes one
single block or multiple blocks as input and considers it as
a single data partition. Suppose, there are k number of data
points in a partition Di ∈ {D1, D2, ...Dm}. In this phase, a
separator function (independent learner) attempts to identify
an optimal hyperplane that separates two classes and collects
all the points existing on the surface of the hyperplane (sup-
port vectors) as shown in Fig. 4. The classification function
for a set of data points using separator function is given by
equation 3.

W txj + b >= 1 for yj = +1

W txj + b <= 1 for yj = −1
(3)

Where, xj is a vector which represents a data point in Di

input space, yj ∈ {+1,−1} is the target class label for jth

data point, b is a scalar which is a bias term, and W is the

TABLE 1: Common notations with descriptions
Notation Description
W Weight vector
D Large dataset(Initial)
Di ith partition of dataset D
m Number of data partitions
C Number of classes in the dataset
svi Complete support vectors generated from

Di data partition
svi(j, k) List of support vectors of class j and k

generated from data partition Di

SV (j, k) Collection of all support vectors of j and k
classes

SV
⋃m,C,C

i=1,j=1,k=i+1 SVi,j,k
y Class of of any single point {1,-1}.
A Matrix of dataset Di without label.
xi ith Feature vector
Xtest A test point
Y Diagonal matrix of y
ζ Soft margin parameter
α Matrix of Lagrangian multiplier.
K(xi, xj) Kernel function.

coefficient weight vector corresponding to the hyperplane
separating two classes.

The exploration of all the hyperplanes along with the cor-
responding support vectors from each partition is done using
constrained optimization originally suggested by Vapnik [1].
Suppose, there exists a hyperplane W tx + b = 0 then, the
following equation will always remain true:

Yi(W
txi + b) >= 1, for all i (4)

For each point which exists on the hyperplane of any of the
classes, the following equality holds:

Yi(W
txi + b) = 1 (5)

For each independent learner executed over the set of data
partition (Di), same margin is considered. The margin max-
imization is the maximization of distance

(
2
||W ||

)
between

two classes which is the same as minimizing 1
2 ||W ||. The

margin minimization function for each partition is given in
equation 6 in case of hard margin and 7 in case of soft margin.

min
W,b

1

2
||W ||2

subject to Yi(W
txi + b)− 1 ≥ 0, i = 1, 2, ..., k

(6)

min
W,b,ζ

(
||W 2||

2
+

k∑
i=1

ζi

)
subject to yi(W

txi + b) ≥ 1− ζi, i = 1, 2, ..., k

(7)

Where, ζ ≥ 0 and a regularization parameter r is added
to regularize ζ. This leads to the soft-margin formulation as
follows:

min
W,b,ζ

(
||W 2||

2
+ r

k∑
i=1

ζi

)
subject to yi(W

txi + b) ≥ 1− ζi, ζ ≥ 0

(8)
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This optimization problem is solved using Lagrangian dual
form. This same problem can be written in matrix form as:

min
W,b

W tW

2

subject to P (AW − eb) ≥ e
(9)

Where, e is a k × 1 vector of ones. Applying Lagrangian
formulation, we get the dual optimization problem as:

maxLY (α) = αte− 1

2
αtY AAtY α

subject to etY α = 0 α >= 0
(10)

This optimization problem can be solved using the stan-
dard quadratic programming method and the result for matrix
α is obtained. svi denotes the set of support vectors which
fall on the hyperplane (or the data points for which 0 <
αi < r, where, r is the error-penalty multiplier). Algorithm
1 describes the process of SV generation from different data
partitions. Each SV entry consists of a pair of support vectors
and the corresponding class label.

Algorithm 1 Intermediate information generation from
dataset partition

1: D = {D1, D2..., Dm} and j, k are two classes
2: SV = [ ]
3: for i← 0 to m− 1 do
4: svj,k = [ ]
5: svj,k=svm(Di)
6: SV (j, k).append(svj,k)
7: end for
8: add SV (j, k) to storage pool

This algorithm is applied to all the Di in parallel and
the generated svi are appended to SV . Equation 11 shows
a simple structure of results generated by this phase as
svi(j, k), which is a set of support vectors for class j and k
while considering the hyperplane between these two classes.

svi =



sv2,1{}
...

svk,1{}
. . .

...
...

svC,1{} . svC−1,C{}


(11)

Thus, all the generated svi are added to the distributed
storage pool and further, the aggregation step is performed
to generate the final accumulated results.

C. THIRD PHASE: INFORMATION AGGREGATION AND
DEDUPLICATION
Each separator function procreates a compressed set of
points svi(j, k) while being executed on a slave node. This
phase takes these generated points {sv1, sv2, ...svm} as input
and performs the tasks of deduplication and aggregation as
shown in Fig. 5.

FIGURE 5: Aggregator function takes extracted sv as in-
put and performs deduplication and generates aggregated
< sv, class > pairs.

1) Duplicate data
The assemblage of compressed points can have duplicate
entries for a point because one support vector of a class can be
engaged as a boundary point for multiple classes. For exam-
ple, a point pwhich is associated with class ci and contributes
as a boundary point for hyperplanes {hij , hik, and hil} those
classify the ith class from {j, k, l} classes. So, after the
completion of second phase, the distributed pool will contain
three entries for the point p with its class ci. This condition
results in an exponential growth in the number of support
vectors in the distributed pool. In order to handle this type of
overflow situation, deduplication is an obligatory step.

2) Aggregator function
The detection and elimination of duplicate points are done
using a < key, value > (like in MapReduce) pair which
is basically a combination of support vector and its class
label. Results from all the slaves are aggregated based on
a < sv{}, class > pair (using equation 12). This process
continues until there is more than one sv{} with the same
class pair.

SV (j, k) =

m⋃
i

svi(j, k) (12)

Thus, the aggregator function forms a final set of points
after deduplication process which can be used for class level
predictions.

D. FOURTH PHASE: FINAL CLASSIFIER GENERATION
The final phase of our proposed method is performed in three
different ways, namely i) one phase voting SVM (1PVSVM),
ii) two phase voting SVM (2PVSVM), and iii) similarity
based SVM (SIMSVM). 1PVSVM, and 2PVSVM include
generation of final cumulative hyperplanes by using a re-
duced set of points after deduplication process. The primary
differences between these two approaches are input selection
process, and counting process. The SIMSVM is a similarity
based approach which uses a similarity measure to decide the
class label for a test point.

1) One phase voting SVM (1PVSVM)
In this scheme, a set of reduced points (SV (j, k)) containing
all points belonging to any two classes is used by each slave
process and cumulative hyperplanes are generated for final
prediction.
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FIGURE 6: Incremental SVM hyperplane generation using
separator function from aggregated results and one phase
voting scheme.

FIGURE 7: Incremental SVM hyperplane generation using
separator function from aggregated results and two phase
voting scheme.

a: Cumulative hyperplane generation
In this technique, each slave process applies a separator
function to generate the cumulative hyperplanes for different
combinations of the classes as shown in Fig. 6. The set
SV (j, k) is used as an input to separator function which
generates the final separating plane for class j and k. This
process of cumulative hyperplanes generation is similar to
phase 2 (subsection III-B) till equation 11. For different pairs
of classes, weight vector W and bias term b, the coefficients
of hyperplanes, are retained instead of svi. Thus, the gen-
erated hyperplanes are used for classification of a test point
Xtest using the following classification function:

f(Xtest) = sign(WtXtest − b)
f(Xtest) = sign[(AtY α)t − b]

or, sign(αtY AXtest − b)
(13)

In case of a multiclass scenario, using W and bias term b,
classification of a test point according to equation 13 is done
using a maximum voting strategy.

Property: For C number of classes, only C(C−1)
2 number

of slave computations of separator function are required
which is adaptive to parallel processing.

Now, to classify the test pointXtest, a majority vote among
C(C−1)

2 classification results is taken as shown in Fig. 6.

2) Two phase voting SVM (2PVSVM)
Unlike 1PVSVM scheme, 2PVSVM considers disjoint sub-
sets (= no of slave nodes) of the reduced points, which may
contain points belonging to different classes, are used for cu-
mulative hyperplane generation process. For each separator

FIGURE 8: Labeling of Xtest using similarity measure.

function, the weight vector W and bias term b are retained
for final predictions.

Any Xtest point is tested by using a two phase voting
scheme as follows:

1) First, the voting is performed within the C(C−1)
2 hy-

perplanes (C = no of classes) generated by a single
separator function.

2) Second, the voting is performed within the separator
functions for final classification.

Fig. 7 shows the overall process of 2PVSVM which clearly
states the differences from 1PVSVM in context of input
section process and the counting process for class level
generation.

3) Similarity based SVM (SIMSVM)

1PVSVM and 2PVSVM carry out several executions of the
complete SVM as both these approaches require to construct
the decisive separating planes from the reduced points which
increases the high computation requirement in this phase.
To prevail this computational overhead, we propose another
approach, similarity based SVM (SIMSVM), which exploits
reduced points and their class labels from the distributed pool
(< x1, y1 >,< x2, y2 >, ... < xz, yz >) as input and
predict the class labels for the test points as shown in Fig.
8. Algorithm 2 demonstrates the complete pseudocode for
predicting class label for a test point Xtest.

Algorithm 2 Label prediction for Xtest by SIMSVM

1: Xtest : A test point

2: TotalSV =
∑C(C−1)

2
i=1 len(SVi)

3: define K(Xi, Xj) as exp(− ||Xi−Xj ||
2

2ρ2

4: for u← 0 to len(test) do
5: MinDist=INTMAX
6: Minindex=0
7: xi=Xtest

8: for v ← 0 to len(TotalSV ) do
9: xj=TotalSV[v]

10: dist=
√
K(xi, xi) +K(xj , xj)− 2K(xi, xj)

11: if MinDist > dist then
12: MinDist=dist
13: Minindex=v
14: end if
15: end for
16: end for
17: return Class of vector on vth Minindex
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The classification of a test point Xtest is done based on a
similarity measure between the existing set of reduced points
in the distributed pool each of which is associated with a
class label. SIMSVM scheme estimates the distance between
two points as a similarity measure and test point Xtest is
classified into the class of that reduced point which has the
minimum distance from it. Suppose, for a test pointXtest, the
class label ytest need to be predicted. Now, ytest is labeled as
ytest = ym if Xm is the closest point to Xtest and ym is the
label for Xm point.

a: Distance functions
To handle non-linearly separable data, transformation of the
data is required in a higher dimension. It is evident that the
use of kernel function for measuring the distances in higher
dimension provides better separating hyperplanes as kernel
requires only the inner product between two vectors in the
higher dimension. This property of the kernel function is
known as kernel trick [36]. Inner product in the transformed
linearized space is same as taking the inner product in the
original space. This solution contributes a non-linear variant
for linear similarity measure. For example, a transformation
from R2 to R3 for a vector z can be done using a linearization
function φ as follows:

φ(z) =

φ1(z)φ2(z)
φ3(z)

 =

 z21√
2z1z2
z22

 (14)

This is a simple example of a polynomial kernel in the form
k(x, y) =< x, y >3. This transformation is equivalent to the
inner product of vectors in the two dimensional space. Sup-
pose, given two vectors xi and xj , kernel function K(xi, xj)
is defined as the inner product of φ(xi) and φ(xj), where, φ
is the basis function that maps the vectors xi and xj from
R (original space) to H (higher dimensional space). The
distance between two vectors can be calculated as:

d(xi, xj) = ||φ(xi)− φ(xj)||2 (15)

=
√
K(xi, xi) +K(xj , xj)− 2K(xi, xj) (16)

We use Gaussian kernel as shown in the equation 17 to find
the distance between two vectors using kernel trick which
also uses the dot product of the vectors in the original space
and is equivalent to explicitly determine the coordinates of
data vector from R space to the H space.

k(xi, xj) = exp−
||xi−xj ||

2

σ2 (17)

SIMSVM uses this kernel to estimate the distance between
a test point and a labeled point.

IV. HANDLING MULTICLASS CLASSIFICATION
PROBLEM
SVMs are able to generate binary classifiers, however, large
datasets often contain more than two classes. There can

be several ways to handle multiclass classification using
SVM. In case of our approaches, we perform multiclass
classification by dividing it into multiple binary classification
problems.

A. ONE-AGAINST-ONE APPROACH
To accomplish multiclass classification, instead of trying to
discriminate one class from all the others, this approach
distinguishes one class from another one. As a result, it
trains the model iteratively for different pairs of classes and
generates the required hyperplanes and support vectors.

Algorithm 3 Multiclass distributed SVM calculation

1: D = {D1, D2..., Dm}
2: SV = [ ]
3: for i← 0 to m− 1 do
4: for j ← 0 to C − 2 do
5: for k ← j + 1 to C − 1 do
6: sv = svm(Di(j, k))
7: svi[j][k].append(sv)
8: SV [j][k].append(svi[j][k])
9: end for

10: end for
11: end for
12: for i← 0 to C − 2 do
13: for j ← i+ 1 to C − 1 do
14: W, b = SVM(SV [j][k])
15: weight.append(W )
16: bias.append(b)
17: end for
18: end for

Algorithm 3 demonstrates the complete one-against-one
classification process. The loops in the 4th and 5th lines
lead to C(C − 1)/2 times calculation of support vectors
for each dataset subset Di and input data points of two
classes at a time as Di(j, k). The svi is a matrix whose each
individual element can be written as svi(j, k) that denotes
the support vectors of class j with the class k in ith subset of
the dataset. Similarly, we can find the m number of matrices
(where, m is the total number of partitions of data). The
dimension of each matrix is C × C which have elements
only in the lower triangle and these matrices are combined
as
⋃i=m
i=1 svi(j, k). This approach is used by each separator

function while dealing with multiclass data.

V. EVALUATION
We have conducted a rigorous experimental analysis in order
to validate the efficacy of our proposed classifiers. The es-
sential objectives of this analysis are to answer the following
explicit queries while handling a large dataset in a distributed
environment as follows:
• How much intermediate information in form of support

vectors is generated from different random data parti-
tions?
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TABLE 2: Dataset used for analysis
S.No. Dataset Domain # Features # Instances # Classes
1 Two Moon [37] Classification 2 10000 2
2 IRIS [38] Classification 4 150 3
3 MNIST [35] Digit Classification 784 60000 10
4 Adult [39] Economics 14 48842 2
5 Synthetic Data Classification 2 2000 10
6 MNIST-8m [40] Classification 784 8000000 10
7 CIFAR [41] Classification 3072 50000 10
8 Fashion-MNIST [42] Classification 784 60000 10

(a) Analysis of average number of
support vectors generated by the in-
dependent learners as the number of
data partitions increases.

(b) Time required for generation
of intermediate information as the
number of partitions increases.

FIGURE 9: Analysis of information generation by the slave
processes while training in phase 2.

• How much training time is required to train the proposed
model using independent learners/separator function?
What is the difference between the time required for
training of the classifier by the proposed approach as
compared to the existing approaches?

• What is the classification accuracy of the proposed
approaches with respect to the existing approaches for
different datasets?

• How the proposed approaches perform when used in an
incremental manner?

• How much speedup and scalability the proposed ap-
proaches can achieve?

a: Comparables

We have compared the performance of our approaches,
1PVSVM, 2PVSVM, and SIMSVM against other existing
approaches, LIBSVM [22], CASVM [29], and BCSVM [33]
on different benchmark datasets shown in Table 2. LIBSVM
is a state-of-the-art approach and CASVM is selected for
its low communication requirements. BCSVM is the latest
approach in this domain and uses pre clustered partitions
of the data. To compare the proposed approach with pre-

clustered partition based approach BCSVM is selected.

A. EXPERIMENTAL SETUP
There are several tools used in the literature for implementing
distributed SVM like Apache Hadoop, spark, etc. To evalu-
ate our proposed classifiers, we have used the MapReduce
programming model for distributed programming and HDFS
as a distributed pool for storing data and intermediate results.
The proposed approaches are implemented on a 10 node clus-
ter, where, each node has 2 CPU cores with 6GB of RAM
and a frequency of 2.6 GHz. Each cluster node is capable of
running two tasks in parallel. Our proposed approaches have
been analyzed using different real-world datasets as shown
in Table 2. The datasets are from different domains and are
linearly separable/non-linearly separable.

B. EXPERIMENTAL RESULTS AND ANALYSIS
We have measured the various schemes based on a few
important aspects: the training time and accuracy. To inspect
the speedup of the proposed approaches, we calculate the
change in training time when new resources are added and
to analyze the scalability of the proposed approaches, we
calculate the speedup when resources, as well as data size,
is increasing. To observe the incremental adaptation, we
estimate the accuracy with the addition of each new data
chunk.

1) Data Reduction Analysis
The analysis, shown in Fig. 9, has been done creating several
partitions of data for analyzing the amount of information
generated by the separator function in phase 2 for Two
Moon dataset. The complete dataset has been divided into 10
partitions and stored over a distributed storage from 1 to 10 in
two ways using uniform sampling and non-uniform sampling
of the data. Each subprocess (mapper) accesses these data
blocks and uses Algorithm 1 to process it. After processing,
it writes all the results back to the distributed storage in a
clustered environment. In the proposed clustered environ-
ment, instead of processing the complete dataset, each slave
node can work on its locally available partition of data. These
slave nodes independently process these partitions, and the
analysis shows the amount of information generated by slave
processes from these partitions as the number of partitions
increases.

The first analysis, shown in Fig. 9a, depicts that as the
number of partitions increases the amount of data available
for a local subprocess decreases which will also decrease
the average number of generated support vectors by each
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FIGURE 10: Training time (log scale) analysis for different datasets
TABLE 3: Training time (sec.) analysis of different approaches over different datasets
S.No. Dataset SIMSVM LIBSVM CASVM BCSVM 1PVSVM 2PVSVM

1 Random Multiclass 4 50 25 6 4.11 4.18
2 Two Moon 20.2 60 46 40 27 32
3 MNIST 2255.4 100000 NA 3456 2400 2542
4 IRIS 1.2 4 2 1.4 2.02 2.015
5 Adult 20 650 102 25 29 32
6 MNIST8m 65265 256728 NA 83467 85634 81054
7 CIFAR 10 1585 12565 2101 2037 2802 3625
8 Fashion-MNIST 2458 120012 NA 3345 3425 3847

FIGURE 11: A comparative analysis of training time with
respect to well known machine learning approaches

slave process. If we increase the number of partitions after
5, there is not much significant decrease in the average
number of support vectors generated by each slave. This
is because, after this point, these many support vectors are
necessary for classification. Results indicate that in case of
non-uniform sampling, the number of support vectors are
slightly high, but due to its simplicity and adaptability, it is
used for data partitioning for further analysis. The proposed
approaches fetch the full advantage of the distributed storage
and processing power. Fig. 9b illustrates that the amount of
time required to process the complete data decreases while
increasing the number of partitions. As we increase the
number of partitions, we also add a processing unit to the
existing data processing cluster, which processes this new
partition and further results in decreasing processing time.
Although, the decrement of time remains valid up to a certain
number of partitions, like, in the considered case, it is up to
5th partition. After this, there is no significant reduction in
time because this amount of time is necessarily required to
process even a very small amount of data. However, this time
amount also depends on the power of each processing unit in
the cluster.

2) Training Time Analysis

Our proposed classifiers have been trained using different
datasets. The complete training time consists of the time
required to execute the second, third, and fourth phase of
the proposed model. Fig. 10 (shows a log scale training
time due to a wide range of training time for different
datasets) and Table 3 (shows the actual training time in
second) present the comparison of training time taken by the
proposed approaches with the existing approaches creating
four partitions of each dataset. The results from the plots and
the table clearly mark the significant improvements over the
existing approaches. 1PVSVM performs better as compared
to 2PVSVM except for MNIST8m dataset due to its efficient
sampling of only two classes at once. Whereas, SIMSVM
exhibits the best performance as compared to LIBSVM,
CASVM and BCSVM because it efficiently distributes the
learning process among several slave processes. SIMSVM
gains over BCSVM, as clustering of the data consumes a
significant amount of time and the difference can be observed
in the Fig. 10. SIMSVM also shows improvements over
1PVSVM and 2PVSVM as it does not require the separator
function to be executed over reduced data points. An analysis
has also been conducted for comparing the proposed ap-
proaches with the existing machine leaning approaches [43].
We have compared the proposed approaches with random
forest, Bayesian classification, and KNN algorithms. The
Log scaled training time analysis is presented in Figure 11.
The proposed approaches show significant gain in context
of training time and accuracy over the existing machine
learning approaches due to its distributed properties. The
proposed 1PVSVM, 2PVSVM, and SIMSVM can scale with
the increasing number of partitions and the time required for
training decreases as number of partitions increases.
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TABLE 4: Accuracy analysis of the different approaches using different datasets
S.No. Dataset SIMSVM LIBSVM CASVM BCSVM 1PVSVM 2PVSVM

1 Random Multiclass 97.2 97.2 96 96 97 96.8
2 Two Moon 99.8 98.2 83 98.5 98 98
3 MNIST 99.9 99.9 NA 98.5 99 98.7
4 IRIS 99.2 99.3 96 99 98.8 98.4
5 Adult 85 85.06 83 84 85 84.5
6 MNIST8m 99. 9 99.9 NA 98 99 99
7 CIFAR 89 89 64 88 87 86.8
8 Fashion-MNIST 92.4 92.4 NA 90 92.2 92

FIGURE 12: Log scale time to train the classifiers for
MNIST dataset while increasing the number of partitions.

Fig. 12 plots this analysis for MNIST dataset; as the
number of partitions increases less number of input points are
available for intermediate information generation in phase
2, hence training time decreases. The number of partitions
corresponds to parallel running of slave processes in each
phase of the proposed approaches. These parallel running
processes are modeled using mapper functions of the MapRe-
duce programming model. The mapper functions execute
phase 2 and generate the intermediate results. The rate of
reduction in training time persists till 8 number of partitions
as there is no significant decrement in the number of reduced
points beyond 8 partitions.

3) Accuracy analysis
Fig. 13 and Table 4 show the accuracy analysis of the pro-
posed approaches with respect to LIBSVM [22], CASVM
[29], and BCSVM [33] on different datasets. For this analy-
sis, we have considered four partitions of each dataset and
each data partition is again divided into 80% for training
and 20% for testing. The training dataset partition is first
distributed and used as an input to phase 2 of the proposed
model. The test data partition is used for testing in phase
4 and the accuracy is measured. Fig.13 and Table 4 evi-
dently state that there is no significance loss in the accuracy
while using the proposed SIMSVM distributed approach as
compared to LIBSVM. The proposed approach shows either
similar or improvement over the BCSVM approach. This
consistency in the accuracy is achieved as the information
about each partition of the data is effectively compressed in
phase 2 of the proposed model. 1PVSVM shows a bit higher

accuracy as compared to 2PVSVM as in case of 2PVSVM
it losses a small amount of accuracy due to the random
sampling from the reduced points in phase 4. This selection
results in less accurate planes between two classes as all
points of these classes are not considered at once for gen-
erating the final hyperplanes. In contrast, SIMSVM shows
better performance than 1PVSVM as it uses a direct simi-
larity measure (along with kernel trick) between a test and a
reduced point. The proposed approaches are also compared
with the other machine learning techniques and a compara-
tive analysis is presented in Fig.14. All the three proposed
approaches maintain similar accuracy with respect to other
machine learning techniques. Each proposed approach is also
tested for its implementation as the incremental model of
classification to serve the purpose of continuous data stream
mining. In this analysis, the data partitions are incrementally
added to the existing pool of information which is used for
testing of the test data. Fig. 15 depicts this basic model
used for testing, where, information represents the support
vectors extracted after completing phase 2 of the proposed
model. Each time a new data partition generates the new data
points (Di) which are combined with the existing reduced
points (infoi−1). Thus, a new reduced information set is
produced and considered as the information(infoi) for the
next iteration. Phase 3 and 4 then use this infoi for further
processing and testing, which results in a better prediction
of the class label for the test data. Fig. 16a and 16b plot
the classification accuracy of the proposed approaches using
MNIST and Two moon dataset by dividing each dataset into
10 disjoint subsets and then incrementally adding these sub-
sets for incremental training. As new data points are added,
SIMSVM takes the advantage (as shown in both the figures)
of kernelized similarity calculation and exempts itself from
calculating any hyperplane, which in turn reduces its chances
of misclassification due to missing data points. It is further
observed in Fig. 16a that 2PVSVM in case of MNIST dataset
shows accuracy equivalent to 1PVSVM with the addition of
4th data chunk and the 8th data chunks onwards as at this
point the sampling in phase 4 for 2PVSVM resulting in better
hyperplanes for classification.

The rate of enhancement in the accuracy depends on the
properties of the considered data. The results reveal that
proposed approaches can also be used in real time scenarios
where data is incrementally added to the existing pool, for
e.g. prediction from a continuous stream of data.
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FIGURE 13: A comparison of accuracy analysis of proposed approaches with respect to LIBSVM and CASVM on different
datasets.

FIGURE 14: A comparative analysis of accuracy with re-
spect to well known machine learning approaches

FIGURE 15: Model used for incremental testing.

4) Speedup and Scalability Analysis
The speedup analysis is done to analyze the parallel process-
ing capabilities of the proposed approaches by dividing the
integral problem and adding resources to solve each division
of the problem. In order to perform this analysis, a continuous
partition up to 10 of the complete data is carried out while
adding processing units in the same proportion and analyze
the training time [44] of the three proposed approaches to
observe the speedup. For example, if the number of partitions
is four, then four parallel processing modules (mappers) are
used, one for each partition (generates SV in phase 2). The
objective of this analysis is to observe the speedup in the
amount of time required to process the data as the number of
processing units increases. We have calculated a speedup ra-
tio measure which is the ratio between training time (TT (1))
required for training over the complete dataset using single
processing module and the training time (TT (p)) required
for training over p partitions of the dataset using p processing

(a) Accuracy analysis with MNIST
datasets.

(b) Accuracy analysis with Two
Moon datasets.

FIGURE 16: Incremental analysis of accuracy for MNIST
and Two Moon dataset while incrementally adding data
chunks for classification.

modules.

SpRatio =
TT (1)

TT (p)
(18)

Let, TT (p) is the training time for p number of partitions.
The expected value of the SpRatio is p for an ideal speedup
implementation. For example, if proposed approach takes
TT (1) amount of time to train the dataset while considering
a single partition, then, for 2 partitions, we can expect that
the amount of time required to train is half of the time
required for 1 partition, i.e. TT (2) = TT (1)/2. Hence,
SpRatio(2) = 2 Figure 17 illustrates the analysis of the
expected speedup with the observed speedup for 1PVSVM,
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FIGURE 17: Speedup analysis for MNIST dataset with
increasing number of partitions.

2PVSVM, and SIMSVM considering MNIST dataset. Till
the number of partitions equals to four, the speedup of
the approaches remains similar, however, after this point,
SIMSVM takes the leverage of distributed processing along
with the reduction in the number of data points available
to each subprocess for kernelized distance calculation and
achieves a better speedup than other two approaches.

Further, we have investigated the scalability of our ap-
proaches by increasing the problem size as well as the
resources. The steps for conducting the same as follows:

• MNIST data is partitioned into 10 disjoint subsets.
• Training is performed on the first subset using a single

processing module TS(1).
• Iteratively new data is added along with processing

modules and training time is observed as TS(p).

The scalability is calculated using a scalability factor(SF )
which is the ratio between TS(1) and TS(p) as shown in
equation 19.

SF =
TS(1)

TS(p)
(19)

Figure 18 shows the scalability analysis for MNIST
dataset, where, the expected value of SF is 1. The proposed
approaches indicate at least 60% scalability can be achieved
even when the size of the problem is scaled to 10 times. As
the scale of the problem increases, the minimum scalability
that SIMSVM shows is 73% due to its high independence
among the processing modules as compared to 1PVSVM and
2PVSVM.

VI. DISCUSSION
Our intended approaches, 1PVSVM, 2PVSVM, and
SIMSVM, are the distributed classification techniques that
utilize the power of distributed computing to predict the
class labels for massive datasets. These approaches are
quite appropriate and well adaptive to the recently used
data processing models like MapReduce, Spark, etc. In this

FIGURE 18: Scalability factor analysis for MNIST dataset
by iteratively adding data instances as well as processing
modules.

section, we have highlighted some significant findings from
our approach.
• It has been empirically observed that adding more re-

sources, the training time can be minimized during the
initial additions. After a certain point, depending on the
dataset distribution, the rate of decrement in training
time gets slow down as at this point each data partition
contains the reduced set of data points that are marked
as essential points for classification purpose and passed
to the next phase.

• Although the proposed approaches attain a good amount
of accuracy over different datasets similar to other
centralized and distributed approaches in the literature,
one important research question that might arise is the
cost associated with the addition of processing units
which requires a trade-off between the training time and
overall resource cost.

• The proposed approaches efficiently retain the accuracy
when the distributed data contains imbalanced class
distribution. This property makes the approaches more
adaptive to real time scenario and removes the overhead
of preprocessing of data for its balancing.

• We have attempted to present the scalability analysis of
the proposed approaches considering addition of a new
processing unit for each new data partition. However,
deciding the number of partitions or processing units is
crucial depending on the availability of the resources.

• The three proposed approaches are tested for their in-
cremental versions. Here, again an interesting research
question might arise that when to update the classifiers
or when to add incremental information to the existing
information pool.

VII. CONCLUSION
This work addressed the challenges of classification using
support vector machine in a distributed environment for big
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data analytics. Through the proposed approaches, we aimed
to solve the issue of efficiently handling trivial partitioning of
large data without loss of accuracy. Independent operations
have been applied over each subset of data ensuring no
communication among the processing units. The proposed
techniques illustrate that retaining only support vectors from
trivially partitioned dataset subset is sufficient to develop
the global classification criteria for a new testing point. The
empirical results show the support to this argument and
reduce the overall training time while utilizing the power
of distributed processing. All the three intended approaches
achieve high speedup similar to the expected speedup and
follow a positive slope as the new processing units are added.
Further, the approaches maintain the scalability of the overall
process closed to the expected as new resources and data
are added. The complete proposed model overcomes the
problem of explosion of reduced points in the distributed
storage by applying the deduplication process. The proposed
approaches are also tested to check their suitability for an
incremental analysis with no loss in the accuracy when new
data is added.

As a future research direction, we would extend our work
to handle real time data like a continuous stream of IoT data
by efficiently distributing the processing and storage load
of the overall learning process. Further, a parallel feature
reduction technique may be developed and incorporated into
the distributed classification process.
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