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Abstract—Data availability is one of the most important
performance factors in cloud storage systems. To enhance data
availability, replication is a common approach to handle the ma-
chine failures. However, previously proposed replication schemes
cannot effectively handle both correlated and non-correlated
machine failures, especially while increasing the data availability
with limited resources. The schemes for correlated machine
failures must create a constant number of replicas for each
data object, which often neglects diverse data popularities and
does not utilize the resource to maximize the expected data
availability. Also, the previous schemes neglect the consistency
maintenance cost and the storage cost caused by replication.
It is critical for cloud providers to maximize data availability
(hence minimize SLA violations) while minimizing costs caused
by replication in order to maximize the revenue. In this paper, we
build a nonlinear integer programming model to maximize data
availability in both types of failures, and therefore minimize the
cost caused by replication. Based on the model’s solution for the
replication degree of each data object, we propose a low-cost
multi-failure (correlated and non-correlated machine failures)
resilient replication scheme (MRR). MRR can effectively handle
both correlated and non-correlated machine failures, considers
data popularities to enhance data availability, and also tries to
minimize consistency maintenance and storage cost. Extensive
numerical results from trace parameters and experiments from
real-world Amazon S3 demonstrate that MRR achieves high
data availability, low data loss probability and low consistency
maintenance and storage costs when compared to previous
replication schemes.

Index Terms—Cloud storage, Replication, Data availability,
Cost-effectiveness.

I. INTRODUCTION

CLoud Computing provides a large range of services to
a number of different types of users. To provide high

quality-of-services, datacenter management, network, and fault
tolerance must be well designed by the service providers.
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Several datacenter storage systems such as Hadoop Distributed
File System (HDFS) [1], RAMCloud [2], Google File System
(GFS) [3] and Windows Azure [4] have been built because
datacenter storage system is an important component of cloud
datacenters, especially for data-intensive services in this big
data era. It is critical for cloud providers to reduce the
violations of Service Level Agreements (SLAs) for tenants
to provide high quality-of-service and avoid the associated
penalties. For example, a typical SLA required from services
that use Amazon’s Dynamo storage system is that 99.9% of
the read and write requests are executed within 300ms [5].
Therefore, a storage system must guarantee data availability
for different applications to comply with SLAs, which is a non-
trivial task. In many cloud services such as Amazon, Google
App Engine and Windows Azure, the server failure probability
is typically in the range of [0.01%, 10%] [6]–[9] and the data
availability is usually in the range of [99.9%, 99.99%] [10].
The data access failures that lead to SLA violations and asso-
ciated penalties, degrade the quality-of-service of applications
and also may lead to the loss of cloud customers, that in
turn, could lead to significant losses for the companies. For
example, Amazon’s one second delay of data availability can
cost them $1.6 billion, and Google could potentially lose eight
million searches per day because of a 0.4 second delay [11].

Data availability is usually influenced by data loss, which is
typically caused by machine failures including correlated and
non-correlated machine failures coexisting in storage systems.
The former means multiple nodes fail (nearly) simultaneously,
while the latter means nodes fail individually. Correlated ma-
chine failures often occur in large-scale storage systems [12]–
[14] due to common failure causes (e.g., cluster power outages,
workload-triggered software bug manifestations, Denial-of-
Service attacks). For example, in cluster power outages [15]–
[17], a non-negligible percentage (0.5%-1%) of nodes [1], [15]
do not come back to life after power is restored [18]. Such
correlated machine failures cause significant data loss [18],
which have been documented by Yahoo! [1], LinkedIn [15]
and Facebook [19]. Non-correlated machine failures [13] are
caused by reasons that include different hardware/software
compositions and configurations, and varying network access
ability. Measurements of over 10,000 file systems on desktop
computers at Microsoft [20] demonstrate that machines expe-
rience disk head crashes hence permanent data-loss failures in
a temporally uncorrelated fashion. Non-correlated failures can
be classified into uniform and nonuniform machine failures, in
which machines fail with the same and different probabilities
(possibly due to the same or different computer configura-
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tions), respectively.
Replication is a common approach to reduce data loss and

enhance data availability. Due to the requirements on storage
efficiency, the data popularity consideration in replication is
critical to maximize the expected data availability1. Due to
highly skewed data popularity distributions [21], [22], popular
data with considerably higher request frequency generates
heavier load on the nodes, which may lead to data unavail-
ability at a time. On the other hand, unpopular data with
few requests wastes the resources for storing and maintaining
replicas. Thus, an effective replication scheme must consider
the diverse data popularities to use the limited resources (e.g.,
memory) [23] to increase expected data availability.

Although the strategy of creating more replicas for data
objects improves data availability, it comes with higher con-
sistency maintenance cost [24], [25] and storage cost [26]. In
consistency maintenance, when data is updated, an update is
sent to its replica nodes. In addition to the number of replicas,
the consistency maintenance cost and storage cost are also
affected by the geographic distance and storage media (e.g.,
disk, SSD, EBS), respectively. To reduce the costs, we need to
minimize the number of replicas, limit the geographic distance
of replica nodes and replicate the additional replicas beyond
the required storage of applications to a less expensive storage
media while still provide SLA guarantee. Therefore, effective
replication methods must maximize expected data availability
(by considering both correlated and non-correlated machine
failures and data popularity) and minimize the cost caused
by replication (i.e., consistency maintenance cost and storage
cost) [25], [27].

Random replication, as a popular replication scheme, has
been widely used in datacenter storage systems including
HDFS, RAMCloud, GFS and Windows Azure. These systems
partition each data object into chunks (i.e., partitions), each of
which is replicated to a constant number of randomly selected
nodes on different racks. Though random replication can han-
dle non-correlated machine failures, it cannot handle correlated
machine failures well. The reason is that any combination of a
certain number of nodes would form a set of nodes for storing
all replicas of a data chunk and data loss occurs if all nodes
in the set experience failures simultaneously [18]. Previously
proposed data replication methods cannot effectively handle
both correlated and non-correlated machine failures and utilize
the limited resource to increase data availability simultane-
ously [12], [13], [17], [18]. Although many methods have been
proposed to improve data availability [12], [13], [17], [24],
[28], [29], they do not concurrently consider data popularities
and the cost caused by replication to increase expected data
availability and decrease cost.

As shown in Figure 1, a key problem here is how to achieve
an optimal tradeoff between increasing data availability and
reducing cost caused by replication with the ultimate goal of
SLA compliance and revenue maximization for cloud service
providers.2 To address the problem, we propose a low-cost

1We use a service-centric availability metric: the proportion of all successful
service requests over all requests [13].

2In this paper, we focus on improving data availability while reducing the
costs caused by replication instead of advancing the well-known CAP theorem.
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Figure 1: Achieving an optimal tradeoff among data availability, storage cost
and consistency maintenance cost.

multi-failure resilient replication scheme (MRR). MRR
outperforms previous replication schemes (e.g., Random
Replication, Copyset Replication [18]) in that it can handle
both correlated and non-correlated machine failures, and
also jointly considers data popularity and the cost caused by
replication. We summarize the contribution of this work below.
•We build a nonlinear integer programming (NLIP) model that
aims to maximize expected data availability (in both types of
failures) with the consideration of popularities and reduce the
cost caused by replication. We then use Lagrange multipliers
to derive a solution: the replication degree (i.e., the number of
replicas) of each data object. We also introduce the concept of
the correlation between data objects to analyze the probability
of two data objects being requested concurrently or sequen-
tially to further reduce the request delay and replication cost.
•Based on the solution, we propose MRR to handle both corre-
lated and non-correlated machine failures. MRR partitions all
nodes to different groups with each group responsible for repli-
cating all data objects with the same replication degree. Then,
MRR partitions nodes in a group into different sets [18]; each
set consists of nodes from different datacenters within a certain
geographic distance. The replicas of a chunk are stored in the
nodes in one set, so data loss occurs only if these nodes expe-
rience failures simultaneously. Each data chunk is replicated to
the corresponding storage medium based on its priority. MRR
reduces the frequency of data loss by reducing the number of
sets in a group, i.e., the probability that all nodes in a set fail.
•We have conducted extensive numerical analysis based on
trace parameters and experiments on Amazon S3 to compare
MRR with other state-of-the-art replication schemes. Results
show that MRR achieves high data availability, low data
loss probability along with low storage and consistency
maintenance cost.

The remainder of this paper is organized as follows. Section
II reviews the related work. Section III presents our NLIP
model. Section IV presents the design for MRR. Section V
describes the data clustering and mapping. Section VI presents
the numerical and experimental results. Section VII concludes
this paper with remarks on our future work.

II. RELATED WORK

Many methods have been proposed to handle non-correlated
or correlated machine failures. Zhong et al. [13] assumed inde-
pendent machines failures, and proposed a model that achieves
high expected service availability. However, this model does
not consider correlated machine failures, hence it cannot
handle such failures. Nath et al. [12] identified a set of design
principles that system builders can use to tolerate correlated
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failures. Cidon et al. [18] proposed Copyset Replication to
reduce the frequency of data loss caused by correlated machine
failures by limiting the replica nodes of many chunks to a
single copyset. Zhai et al. [30] proposed Independence-as-a-
Service (INDaaS), an architecture to audit the independence
of redundant systems proactively, thus avoiding correlated
failures. Zhai et al. [31] proposed a novel language framework
(RepAudit) that manages to prevent correlated failure risks be-
fore service outages occur, by allowing cloud administrators to
proactively audit the replication deployments of interest. These
methods for correlated machine failures do not consider data
popularity to minimize data loss probability in correlated and
non-correlated machine failures. Unlike Copyset Replication,
our proposed MRR reduces probability of data loss caused by
both correlated and non-correlated machine failures with the
consideration of data popularity. It derives diverse replication
degrees for data objects with different popularities and thus
increases the overall data object availability by creating more
replicas for popular data objects and less for unpopular data
objects. Moreover, MRR replicates data objects by reducing
consistence maintenance and storage costs, which is critical
for cloud providers to maximize their revenue.

Ford et al. [17] analyzed various failure loss scenarios on
GFS clusters, and proposed geo-replication as an effective
technique to prevent data loss under large scale concurrent
node failures. However, they did not provide a specific strat-
egy for reducing data loss caused by both correlated and
non-correlated machine failures while minimizing cost (e.g.,
consistency maintenance cost and storage cost) caused by
replication. The previously proposed methods cannot handle
both correlated machine failures and non-correlated machine
failures while utilizing limited resources to increase data
availability. They neglect the data popularity existing in the
current cloud storage system and thus could not fully utilize
the resource to increase data availability. Also, they do not
consider minimizing the consistency maintenance and storage
costs caused by replication.

There is a large body of work on enhancing data
availability for distributed storage systems. Abu-Libdeh
et al. [28] presented a replication protocol for datacenter
services to provide strong consistency and high availability.
Bonvin et al. [24] proposed a self-managed key-value store
that dynamically allocates the resources of a data cloud to
several applications in a cost-efficient and fair manner. Ford
et al. [17] characterized the availability properties of cloud
storage systems and presented statistical models that enable
further insight into the impact of multiple design choices (e.g.,
data placement and replication strategies). Yu et al. [32] used
a fixed number of replicas for every data object, and showed
that the assignment of object replicas to machines plays a
dramatic role in the availability of multi-object operations.
Zhang et al. [33] proposed a cost-efficient data hosting scheme
(CHARM) with high availability in heterogenous multi-cloud.
CHARM intelligently puts data into multiple clouds with
minimized monetary cost and guaranteed availability.
However, most of the previous work neglects data object
popularities, particularly when determining the number of
replicas for each object, and thus cannot satisfy the demands

Table I: Notations
N Total # of nodes Cth

s Upper bound of Cs
T One epoch duration ϕi j Popularity function of Di j
p Prob. of a server failure ψi j Priority function of Di j
Di j The jth data in app. i Ki Space capacity for app. i
si j The size of Di j ri j Prob. of requesting Di j
di j Replication degree of Di j vi j # of visits to Di j / epoch
M # of chunks of each data csi j Di j’s unit storage cost
Pf Prob. of data loss puni Prob. of data loss in
ai app. i uniform machine failures
Cs Total storage cost pcor Prob. of data loss in
Cc Consistency maint. cost correlated machine failures
S Scatter width pnon Prob. of data loss in non-
n # of applications uniform machine failures
Cth

c Upper bound for Cc Torig Request time w/o clustering
m # of data objects / app. P̄r Expected request failure prob.
bai App. rank Rτ Corr. b/w two data objects
δcom Ave. comm. cost Pc(χ1,χ2) Concurrent access freq. of χ1, χ2
Pth

r Upper bound of P̄r Ps(χ1,χ2) Sequential access freq. of χ1, χ2

of popular data objects or fully utilize the limited resource.
Although the work in [13], [21] consider object popularities,

they do not give a solution for handling correlated machine
failures, which is a key issue in achieving high availability
in today’s cloud datacenters [12]. In addition, they do not
consider different storage medium prices (for reducing storage
cost) or geographic distance in selecting nodes to store repli-
cas, both of which affect the total cost of the storage systems.

Motivated by the problems in the existing work, we
propose MRR that can effectively handle both correlated and
non-correlated machine failures and also considers the factors
that were discussed in Section I to maximize data availability
and reduce the consistency maintenance and storage costs.

III. NONLINEAR INTEGER PROGRAMMING MODEL FOR
MRR

A cloud storage system usually serves multiple applications
simultaneously. Without the loss of generality, we assume
there are n applications in the cloud storage, and each ap-
plication has m data objects [24]. Each data object belongs to
only one application, and is split into M partitions [24] and
the data object is lost if any of its partitions are lost [18]. The
replication degree of a data object represents the number of
replicas of the data object. We use Di j to denote the jth data
object belonging to application i (denoted by ai). Let di j be
the replication degree of Di j. The replicas of a partition of a
data object are placed in a set of di j different nodes. Suppose
there are N servers in the cloud. For analytical tractability,
we assume a physical node (i.e., a server) belongs to a rack,
a room, a datacenter, a country and a continent. To easily
identify the geographic location of a physical node, each
physical node has a label in the form of “continent-country-
datacenter-room-rack-server” [24]. For easy reference, Table I
lists the main notations used in this paper.

Problem Statement: Given data object request probabil-
ities, data object sizes, space constraints for different appli-
cations, and thresholds for request failure probability, consis-
tency maintenance cost and storage cost, what is the optimal
replication degree for each data object, so that the request
failure probability, consistency maintenance cost and storage
cost are minimized in both correlated and non-correlated
machine failures? Then, how to assign the chunk replicas of
data objects to the nodes to achieve the objectives?
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A. Data Availability Maximization

We maximize data availability by considering both machine
failure probability and data object request probability (i.e.,
popularity). We minimize the data loss probability in both
correlated and non-correlated machine failures. Different data
objects may have diverse popularities, and then have dissimilar
demands on the number of replicas to ensure data availability.

1) Correlated Machine Failures: To reduce data loss in
correlated machine failures, we adopt the fault-tolerant set
(FTS) concept from [18], which is a distinct set of servers
holding all copies of a given partition. Each FTS is a single
unit of failure. That is, when an FTS fails, at least one data
object is lost. For correlated machine failures, the probability
of data loss increases as the number of FTSs increases because
the probability that the failed servers constitute at least one
FTS increases (It is more likely that the failed servers include
at least one FTS). In response, we minimize the probability
of data loss by minimizing the number of FTSs.

To this end, we can statically assign each server to a single
FTS, and constrain the replicas of a partition to a randomly
selected preassigned FTS. That is, we first place the primary
replica (i.e., original copy) on a randomly selected server,
and then place the secondary replicas on all the nodes in
this server’s FTS. However, this will lead to load imbalance
problem in which some servers become overloaded while some
servers are underloaded due to data storage. On the other hand,
random replication that randomly chooses a replica holder
has a higher probability of data loss because almost every
new replicated partition creates a distinct FTS. To achieve a
tradeoff, we use the approach in Copyset Replication [18],
which assigns a server to a limited number of FTSs rather than
a single FTS. Due to the overlap of FTSs, after the primary
replica is stored in a randomly selected server, the FTS options
that can store the secondary replicas are those that hold the
server. The servers in these sets are options that can be used
to store the secondary replicas. The number of these servers
is called scatter width (denoted by S). For example, if the
FTSs that hold server 1 are {1,2,3}, {1,4,5}, then when the
primary replica is stored at server 1, the secondary replica can
be randomly placed either on servers 2 and 3 or 4 and 5. In
this case the scatter width equals 4.

The probability of correlated machine failures equals the
ratio of the number of FTSs over the maximum number of sets:

#FT Ss/max{#sets}. (1)

To reduce the probability of data loss, Copyset Replication
makes the replication scheme satisfy two conditions below:
• Condition 1: The FTSs overlap with each other by at most

one server.
• Condition 2: The FTSs cover all the servers equally.
Copyset Replication uses the Balanced Incomplete Block

Design (BIBD)-based method for any scatter width to create
FTSs that satisfy both condition 1 and 2 and minimize #FTSs3.

We define a pair (X ,A), where X is a set of servers in the
system (i.e., X = {1,2, ...,N}), and A is a collection of all FTSs

3In implementation, Copyset Replication uses random permutation to create
FTSs.

in the system. Let N,R and λ be positive integers such that N >
R≥ 2, BIBD for (N,R,λ ) satisfies the following properties:
• Each FTS contains exactly R servers.
• Each pair of servers is contained in exactly λ FTSs.

When λ = 1, the BIBD provides an optimal design for mini-
mizing the number of FTSs for scatter width S =N−1. In this
case, condition 1 ensures that each FTS increases the scatter
width for its servers by exactly R− 1 compared to the case
when λ = 0. Copyset Replication creates S

R−1
N
R FTSs. Then,

the failure probability in correlated machine failures equals:

pcor =
S

R−1
N
R
/

(
N
R

)
. (2)

In random replication, the number of FTSs created is [18]:{
#FT Ss = N

( S
R−1

)
, S < N

2
#FT Ss≈

(N
R

)
, S≈ N.

(3)

Based on Eqs. (1), (3), we can calculate the probability of
correlated machine failures in random replication.

We give an example to illustrate the process of generating
FTSs. Consider a storage system with N = 12 servers, the size
of FTS R = 3, and the scatter width S = 4. Using the BIBD-
based method, the following solution of FTSs is created to
achieve less number of FTSs.

B1 = {0,1,2},B2 = {3,4,10},B3 = {6,7,8},B4 = {9,10,11},
B5 = {0,3,8},B6 = {1,4,7},B7 = {2,5,11},B8 = {5,6,9}.

For random replication, the #FTSs is 72 which is obtained
according to Equ. (3) [18]. Hence, the probability of data
loss caused by correlated machine failures is:

#FT Ss/
(

N
R

)
= 72/

(
12
3

)
= 0.327.

However, for BIBD-based method from Copyset Replication,
the number of FTSs is 8, and the probability of data loss
caused by correlated machine failures is much smaller:

#FT Ss/
(

N
R

)
= 8/

(
12
3

)
= 0.036.

There are many methods that can be used for constructing
BIBDs, but no single method can create optimal BIBDs for
any combination of N and R [34], [35]. Copyset Replication
combines BIBD and random permutations to generate a non-
optimal design that can accommodate any scatter width. By re-
laxing the constraint for the number of overlapping nodes from
an exact number to at most the exact number, the probability
of successfully generating FTSs increases. Since the scatter
width should be much smaller than the number of nodes,
MRR is likely to generate FTSs with at most one overlapping
node [18]. MRR tries to minimize the replication degrees of
data objects in order to limit the consistency maintenance cost
and storage cost, the replication degrees should be not large
or vary greatly. Smaller replication degrees generate smaller R
values. Although sometimes it is not possible to generate the
optimal BIBDs, BIBDs can be used as a useful benchmark to
measure how close MRR is to the optimal scheme for specific
values of scatter width [18].

2) Uniform Machine Failures: In the scenario of uniform
machine failures, the failures of machines are statistically inde-
pendent of each other. Each machine has the same probability
to fail, denoted by pu (0 < pu < 1). The data object is lost
if any chunk (partition) of the data object is lost, and a
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chunk is lost only if all replicas of the chunk are lost. Hence,
the expected probability of data loss in the uniform machine
failure is:

puni =
n

∑
i=1

m

∑
j=1

(1− (1− pdi j
u )M)/(m ·n), (4)

where M is the number of partitions (chunks) for each data
object, n is the number of applications, and m is the number
of data objects in each application.

3) Nonuniform Machine Failures: Machines in a storage
system may experience nonuniform machine failures due to
different hardware/software compositions and configurations.
Assume replicas of each data object are placed on machines
with no concern for individual machine failures. Let p1, ..., pN
be the failure probabilities of N servers in the cloud, re-
spectively. Based on the work in [13], the expected data
object failure probability is the same as that on uniform
failure machines with per-machine failure probability equaling
∑

N
i=1 pi/N. We use pnon to denote the expected probability of

data loss in nonuniform machine failures. Then,

pnon =
n

∑
i=1

m

∑
j=1

(1− (1− (
N

∑
k=1

pk/N)di j )M)/(m ·n). (5)

4) Data Object Popularity: We introduce a method to
evaluate a data object’s popularity below. Different types of
applications are always featured by the popular time periods
of data objects. For example, the videos in social network
applications are usually popular for 3 months [36], while the
news in a news website usually is popular for several days.
We rank the applications based on their types and use bai to
denote the rank; a higher bai means that the application has
longer popular time periods of data objects. Assume time is
split into epochs (a fixed period of time). To avoid creating
and deleting replicas for data objects that are popular for a
short time period, we consider both its application rank (bai )
and its expected visit frequency, i.e., the number of visits in
an epoch (vi j) [24], [37], to determine the popularity function
of a data object (ϕ(·)):

ϕi j(·) = α ·bai +β · vi j, (6)

where α and β are the weights for the two factors.
Let ri j be the probability of requesting data Di j. For single-

object requests, ∑
n
i=1 ∑

m
j=1 ri j = 1 after normalization. The

request probability of a data object is the same as that of
each partition of this data object. The request probability is
proportional to the popularity of the data object (ϕ(·)).

ri j = k1 ·ϕi j(·), (7)

where k1 is a certain coefficient.
5) Availability Maximization Problem Formulation: In a

cloud system with the co-existence of correlated and non-
correlated (uniform and nonuniform) machine failures, the data
is lost if any type of failures occurs. Recall that pcor (For-
mula (2)), puni (Formula (4)) and pnon (Formula (5)) are prob-
abilities of a data object loss caused by correlated machine fail-
ures, uniform machine failures, and nonuniform machine fail-
ures (at epoch t), respectively. So the probability of data loss
caused by correlated and non-correlated machine failures is

Pf = w1 · pcor +w2 · puni +w3 · pnon (
3

∑
i=1

wi = 1), (8)

where w1,w2, and w3 are the probabilities of the occurrence
of each type of machine failures, respectively.

We maximize the data availability by minimizing the ex-
pected request failure probability with the consideration that
different data objects have different popularities. To achieve
this goal, we present a NLIP model with multiple constraints
to determine the replication degree of each data object.

Given the popularities and sizes of data objects, our goal
is to find the optimal replication degree of each data object
such that the expected request failure probability (denoted by
P̄r) can be minimized. Each application purchases a certain
storage space in public clouds. Also, in private clouds,
different applications may be assigned different storage
spaces based on their priorities. Thus, the storage space
constraint for each application is necessary and important due
to the limited precious storage media. Thus, we formalize our
problem as the following constrained optimization problem:

min P̄r =
n

∑
i=1

m

∑
j=1

(ri j · (1− (1− (Pf )
di j )M))/(m ·n)

s.t.
m

∑
j=1

si j ·di j ≤ Ki (i = 1, ...,n),
(9)

where Ki (i = 1, ...,n) is the space capacity for application
i, and si j is the size of data object Di j. ∑

m
j=1 si j · di j is the

total storage consumption of all the data objects belonging to
application i. The optimization objective is to minimize the
expected request failure probability and the constraint is to
ensure that the storage consumption of an application does
not exceed its space capacity.

B. Consistency Maintenance Cost Minimization

In this section, we formulate the problem of minimizing
consistency maintenance cost caused by data replication. We
use Cc to denote the total consistency maintenance cost of
all replicas in the cloud storage system. We first introduce
how to calculate Cc. Previous work [38] indicates that the
data object write overhead is linear with the number of data
object replicas. Then, the consistency maintenance cost of a
partition can be approximated as the product of the number of
replicas of the partition and the average communication cost
parameter (denoted by δcom) [24], i.e., di j · δcom. Hence, the
total consistency maintenance cost of all data objects is

Cc =
n

∑
i=1

m

∑
j=1

(M ·di j) ·δcom. (10)

The fixed average communication cost (δcom) can be calcu-
lated as in [39]:

δcom = E[∑
i, j

su ·dis(Si,S j) ·σ ], (11)

where su is the average update message size, dis(Si,S j) is
the geographic distance between the server of the original
copy Si and a replica server S j (an expectation of all possible
distances between server of original copy (primary server)
and replica servers, which is calculated from a probabilistic
perspective), and σ is the average communication cost per
unit of distance. We adopt the method in [24] to calculate the
geographic distance between servers. Specifically, it uses a
6-bit number to represent the distance between servers. Each
bit corresponds to the location part of a server, i.e., continent,
country, datacenter, room, rack and server. Starting with the
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most significant bit (i.e., the leftmost bit), each location part
of both servers are compared one by one to compute the
geo-similarity between them. The corresponding bit is set to
1 if the location parts are equivalent, otherwise it is set to 0.
Once a bit is set to 0, all less significant bits are automatically
set to 0. For example, suppose Si and S j are two arbitrary
servers, and the distance between them is represented as
111000 (as shown below). Then, it indicates that Si and S j
are in the same datacenter but not in the same room.

continent country datacenter room rack server

1 1 1 0 0 0

The geographic distance is obtained by applying a binary
“NOT” operation to the geo-similarity. That is,

111000 = 000111 = 7 (decimal).

Thus, the optimization problem for consistency maintenance
cost can be formulated as follows:

min Cc =
n

∑
i=1

m

∑
j=1

(M ·di j) ·δcom

s.t.
m

∑
j=1

si j ·di j ≤ Ki (i = 1, ...,n).
(12)

C. Storage Cost Minimization

Different applications require different storage media (e.g.,
disk, SSD, EBS) to store data. Different media have different
costs per unit size. For example, in the Amazon web cloud
service, the prices for EBS and SSD are $0.044 and $0.070
per hour, respectively. After satisfying the applications’ storage
requirements on different storage media, we need to decide the
storage media for their additional replicas for enhanced data
availability. Different applications have different SLAs with
different associated penalties. The applications with higher
SLA violation penalties should have higher priorities to meet
their SLA requirements in order to reduce the associated
penalties. Therefore, the additional replicas of data objects of
higher-priority applications should be stored in a faster storage
medium. On the other hand, in order to save storage cost, the
additional replicas of data objects of lower-priority applica-
tions should be stored in a lower and less expensive storage
medium. We use bpi to denote application i’s priority; higher
bpi means higher priority. Since faster storage mediums are
more costly, for data objects of high priority applications, we
hope to store more data partitions in faster storage mediums in
order to satisfy more requests per unit time hence increase data
availability [24]. Thus, to determine the storage medium for
storing additional replicas, we define a priority function ψ(·)
of a data object based on its application priority and size [21]:

ψi j(·) = γ ·bpi +η/si j, (13)

where γ and η are the weights for application priority and
data object’s size. The size of the data object can be changed
due to write operation. The priority values are classified to
a number of levels, and each level corresponds to a storage
medium. Thus, the unit storage cost of a data object equals the
unit cost of its mapped storage medium, denoted by csi j , which
is proportional to the priority value of a data object (ψi j(·)).

csi j = k2 ·ψi j(·), (14)

where k2 is a certain coefficient.
The storage cost of a data object is related to its storage

medium, its size and the number of its replicas. Different
storage mediums have different unit costs, and different
data objects have different sizes and replication degrees.
We minimize storage cost by minimizing the expected cost
for storage mediums. We examine expected storage cost
minimization by determining the replication degree for each
data object. To achieve this goal, we present a NLIP approach
with multiple constraints that can be used to obtain a policy.

Given the applications of data objects and the data object
sizes, our goal is to find the replication degree for each data
object that minimizes storage cost. Hence, we formalize our
problem as the following constrained optimization problem:

min Cs =
n

∑
i=1

m

∑
j=1

(si j ·di j · csi j ·T )

s.t.
m

∑
j=1

si j ·di j ≤ Ki (i = 1, ...,n),
(15)

where T is the time duration of an epoch.

D. Problem Formulation and Solution

We consider additional three threshold constraints for
request failure probability (Pth

r ), consistency maintenance
cost (Cth

c ) and storage cost (Cth
s ). The probability of expected

request failure must be no larger than a threshold Pth
r . This

constraint is used to ensure that the expected request failure
probability is not beyond a threshold, which serves the goal
of achieving high data availability. The constraint on the
consistency maintenance cost is to ensure that the consistency
maintenance cost in one epoch is no larger than a threshold,
Cth

c . The storage cost in one epoch is no more than threshold
Cth

s . The constraints on both consistency maintenance cost and
storage cost are to ensure that the cost caused by replication
is at a low level, which makes the system more efficient and
economical. By combining Formulas (9), (12) and (15) and
the additional constraints, we can build a NLIP model for the
global optimization problem as follows [40]:

min {P̄r +Cc +Cs}=
n

∑
i=1

m

∑
j=1

(ri j · (1− (1− (Pf )
di j )M))/(m ·n)

+
n

∑
i=1

m

∑
j=1

(M ·di j) ·δcom +
n

∑
i=1

m

∑
j=1

(si j ·di j · csi j ·T ),
(16)

s.t.
m

∑
j=1

si j ·di j ≤ Ki (i = 1, ...,n), (17)

n

∑
i=1

m

∑
j=1

(ri j · (1− (1− (Pf )
di j )M))/(m ·n)≤ Pth

r (0 < ri j < 1), (18)

n

∑
i=1

m

∑
j=1

(M ·di j) ·δcom ≤Cth
c , (19)

n

∑
i=1

m

∑
j=1

(si j ·di j · csi j ·T )≤Cth
s . (20)

The decision variables are data objects’ replication degrees,
and they must be positive integers in practice. The objective
is to minimize the request failure probability, the consistency
maintenance cost and storage cost. The optimization con-
straints are used to ensure that the space capacity of data ob-
jects belonging to each application is not exceeded, the prob-
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ability of expected request failure is no more than a threshold
Pth

r , the consistency maintenance cost and storage cost in one
epoch are no more than thresholds Cth

c and Cth
s , respectively.

Theorem 3.1. The relaxed NLIP optimization model is
convex.

Proof Inequs. (17), (19), (20) are linear inequalities, and
they define convex regions. The exponential function P

di j
f

in Inequ. (18) is convex, and the sum of convex functions
is a convex function. Thus, the constraint (18) defines a
convex set. All the constraints define convex regions, and the
intersection of convex sets is a convex set. Thus, the region of
the optimization problem is convex. Hence the relaxed NLIP
optimization problem is convex.

For analytical tractability, we first relax the problem to a
real-number optimization problem in which d11, ...,dnm are
real numbers, and derive the solution for the real-number
optimization problem. Then, we use integer rounding to
get the solution for practical use. Specifically, we adopt the
approach from [13] to round each di j to its nearest integer
while all di j’s smaller than 1 are rounded to 1. By relaxing
the problem to real-number optimization problem, the optimal
solution should always use up all the available storage space
(i.e., Ki) for each application4 [13]. Thus, we have

m

∑
j=1

si j ·di j = Ki (i = 1, ...,n), (21)

where Ki is the space capacity for application i. For the real-
number optimization problem, we use Lagrange multipliers to
derive the solution. Since there are n+ 3 constraints, we use
the multipliers λ1,λ2, ...,λn+3 to combine the constraints and
the optimization goal together into the Lagrangian function

Λ(d11, ...,d1m, ...,dn1, ...,dnm,λ1,λ2, ...,λn+3)

=
n

∑
i=1

(
m

∑
j=1

(ri j(1− (1− (Pf )
di j )M))/(m ·n)+

m

∑
j=1

(M ·di j)δcom +
m

∑
j=1

(si jdi jcsi j T )

+λi(
m

∑
j=1

si j ·di j−Ki))+λn+1(
n

∑
i=1

m

∑
j=1

(ri j(1− (1− (Pf )
di j )M))/(m ·n)−Pth

r )

+λn+2(
n

∑
i=1

m

∑
j=1

(M ·di j)δcom−Cth
c )+λn+3(

n

∑
i=1

m

∑
j=1

(si j ·di j · csi j ·T )−Cth
s ),

(22)
where Ki = ∑

m
j=1 si j ·di j. The critical values of Λ is achieved

only if its gradient is zero. Based on Theorem 3.1, the NLIP
optimization problem is convex. Thus, the gap between the
relaxed problem and its dual problem is zero [41]. Also, the
object function of the NLIP model is derivable, thus the gra-
dients of λ exist. We can get the solution for the optimization
problem based on the Lagrange dual solution. Considering
that the popularities and importance of data objects usually
do not change much within a short period of time, we can
choose larger value for T to avoid computation overhead, and
also use IPOPT [42], [43] (a software library for large scale
nonlinear optimization) to solve the large-scale nonlinear
optimization problem, which make MRR more practical.

4The storage cost may increase as storage space increases, but it also
depends on the storage media for storing the data, thus the claim that the
space constraint holds at equality does not contradict the main hypothesis
(cost-effective) of the paper.

Table II: Parameters from publicly available data [18].
System Chunks per node Cluster size Scatter width
Facebook 10000 1000-5000 10
HDFS 10000 100-10000 200
RAMCloud 8000 100-10000 N-1

IV. THE MRR REPLICATION SCHEME

In Section III, we calculate the replication degree of each
data object, which is the first step of the design of MRR.
The next problem is how to assign the replicas to nodes,
which is of importance for increasing the data availability [14].
Recall that in Section III-A, we introduced BIBD-based file
replication in Copyset Replication that can reduce data loss
probability in correlated machine failures. Though the BIBD-
based method can be used to reduce data loss probability in
correlated machine failures, it requires a constant replication
degree and cannot be used for replicating data with various
replication degrees. Our proposed MRR can deal with the
problems. We present the details of MRR below.

Algorithm 1 shows the pseudocode of the MRR replication
algorithm. For particular and arbitrary i and j, the replication
degree di j of data Di j can be obtained from the NLIP
optimization model in Section III. To reduce data loss in
both correlated and non-correlated machine failures, MRR
first ranks these replication degrees in ascending order (i.e.,
d1, ...,dl). For a given replication degree di (i = 1, ..., l),
MRR first groups the data objects with replication degree
di together (denoted by Di), and counts the number of data
objects with replication degree di (denoted by Nr

Di
). To handle

the problem of varying replication degrees, MRR partitions all
nodes to l groups and then conducts Copyset Replication [18]
to assign chunks with replication degree di to the ith node
group (i = 1, ..., l). For load balance, the number of nodes

Algorithm 1: Pseudocode of the MRR algorithm.
1 Compute the replication degree for each data object using the NLIP

model (Section III)
2 Rank the replication degrees in ascending order d1, ...,dl
3 for i← 1 to l do
4 Group data objects with di together (Di)
5 Use BIBD-based method to generate FTSs; each FTS has nodes

from different datacenters but within a certain geographic
distance

6 Store each chunk’s replicas of data objects with di to all nodes
in an FTS with di

7 return

in each group is proportional to the number of replicas
that will be stored in the group. Accordingly, MRR assigns
|N ·

Nr
Di
·di

∑
l
i=1 Nr

Di
·di
| nodes to data group Di. MRR then uses the

BIBD-based method to generate FTSs for each group of nodes.
Specifically, MRR determines λ in Section III-A1 based on
the load balancing requirement and then uses the BIBD-based
method for (N,R,λ ), where N is the number of the nodes in a
node group and R is the replication degree of the group (di) (R
relates the correlated machine failure with replication degree).
The nodes in each FTS are required to be from different
datacenters and within a certain geographic distance between
each other. Distributing replicas over different datacenters
can avoid data loss due to machine failures (e.g., caused by
power outages) for data reliability [44], [45]. Limiting the
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Figure 2: Architecture of MRR for cloud storage fault-tolerant sets (FTSs).

distances between replica nodes for a data chunk constrains
the consistency maintenance cost. MRR replicates the chunks
of each data object to all nodes in an FTS5. Figure 2 illustrates
an example to show the design of MRR. In the example,
d1 = 2, d2 = 3, and d3 = 4. In the left most block, each FTS
contains two chunks of a data object. Each FTS overlaps with
every other FTS with at most one server. This helps reduce
the probability of data loss in correlated machine failures
and balance the load. For those data objects with replication
degree 2, the chunks of a data object will be stored to the
nodes in an FTS in the left most block. In the middle block,
each FTS contains three chunks of a data object. In the right
most block, each FTS contains four chunks of a data object.

Recall that each data priority value corresponds to a storage
medium. We assume that all servers have all types of storage
media, and we need to determine which medium to use for a
given priority on a given server. When replicating a chunk to a
node, MRR chooses the storage media for the chunks based on
data objects’ priority calculated by Formula (13). Data objects
with higher priority values will be stored to faster and more
expensive storage media (e.g., Memory, SSD), and vice versa.
The constraint (17) is to ensure that storage requirements of
data objects do not overfill the servers.

V. DATA OBJECTS CLUSTERING AND MAPPING
In cloud storage system, users may request multiple similar

(or correlated) data objects (e.g., files) concurrently or sequen-
tially. It is important to group correlated data objects and store
them in closer locations and leverage locality to reduce the re-
quest delay and cost (consistency maintenance cost) [46]–[48].

A. Definition of Correlation
In this section, we first introduce the concept of the corre-

lation between data objects, then we leverage the correlation
between data objects and propose the data objects clustering
and mapping algorithm to further reduce the cost (consistency
maintenance cost) and the request delay (thereby improving
data availability). The key idea is to store the data objects
that have higher possibility to be accessed concurrently or
sequentially by leveraging the data correlation, and speed up
the data object request or updating request by merging requests
on correlated data objects into a single request. The rationale
of our algorithm results from locality and cache in computer
systems. Denote Pc(χ1,χ2) and Ps(χ1,χ2) as the frequencies
of two data objects, χ1 and χ2 being accessed concurrently
and sequentially during a period of time τ , respectively. Then
the correlation for χ1 and χ2 can be calculated as:

5Although putting all replicas of a chunk to the nodes in an FTS can bring
about the cost of inter-rack transfer (across oversubscribed switches), it can
significantly reduce the probability of data loss caused by correlated machine
failures using BIBD-based method [18].

Cutting Line

Data Objects

Data Objects

𝑌1 𝑌2

Figure 3: Data objects clustering based on minimum cut tree algorithm.

Rτ = α ·Pc(χ1,χ2)+β ·Ps(χ1,χ2)+(1−α−β ) ·Rτ−1, (23)

where α and β are the weights for the frequency of concur-
rently accessing and sequentially accessing data. Rτ−1 is the
correlation between χ1 and χ2 in the previous time period
τ−1. Pc and Ps are calculated from the historical records of
data access, and they can be calculated as

Pc(χ1,χ2) = Tc(χ1,χ2)/(Tχ1 +Tχ2 )

Ps(χ1,χ2) = Ts(χ1,χ2)/(Tχ1 +Tχ2 ),
(24)

where Tc(χ1,χ2) is the time in the record that χ1 and χ2 were
accessed concurrently, Ts(χ1,χ2) is the time in the record that
χ1 and χ2 were accessed sequentially. Tχ1 and Tχ2 are the
total access times of χ1 and χ2, respectively. α and β in
Formula (23) are also calculated from the record based on
total concurrent and sequential accesses. Our methodology is
an off-line policy since the cost of calculation of Rτ could be
high. Rτ for each pair of data objects is calculated dynamically.

B. Data Objects Clustering
After getting the correlation between data objects, we build

a graph for m data objects in each application. In the graph,
each vertex is a data object and each edge represents the
relation between two data objects. We use minimum cut tree
algorithm to divide the graph into two parts and allocate all
the data objects with higher correlation to closer locations as
shown in Figure 3. Below we present a simple method to build
the correlation graph and cluster the data. The front-end server
receives the request for fetching the data objects and thus be
able to calculate the correlation between data objects. Then,
the server generates a weighted undirected graph G(V,E),
where V is the set of data objects and E is the set of edges
connecting data objects. The weight of edge connecting data
object χ1 and χ2 is the correlation coefficient between them at
current time, denoted by RT (χ1,χ2). We apply the minimum
cut tree algorithm to the graph and cluster data objects into dif-
ferent subsets. Then, we map different subsets of data objects
to different servers. As shown in Figure 3, we cut the graph
G(V,E) into two clusters Y1 and Y2. Each cluster contains a
subset of data objects with higher correlation coefficient, de-
noted by high RT (χ1,χ2). The value of the cut equals the sum
of the weights of the edges across the cut line. Thus, we have:

V c
Y1,Y2

= ∑
χ1∈Y1

∑
χ2∈Y2

Rτ (χ1,χ2). (25)
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The minimum cut tree algorithm achieves the relatively
smallest value for the cut as well as large sum of weights inside
each class [49]. Therefore, we could map the data objects in
one cluster to the same server, and map data objects in different
clusters to adjacent servers. However, the key challenge is to
guarantee the enough space in each target server to store the
clustered data objects when applying this strategy. Algorithm 2
shows the pseudocode of the clustering of data objects and
the mapping to servers. Given a graph G(V,E) and a tree in
which each tree node represents the free capacity of a data
server and the distance between tree nodes is the geographic
distance between the servers.

…… ……

NeighboursMigration

… Continent

… Country

… Data Center

… Room

… Rack

… Data Servers

Figure 4: The tree structure of the servers.

In Section III-B, we represent the distance between servers
as a 6-bit number. Each bit corresponds to the location part of
a server, i.e., continent, country, datacenter, room, rack and
server, which means that the maximum depth (denoted by
depthM) of the tree structure is six as shown in Figure 4. Since

Algorithm 2: Pseudocode of the data objects clustering and
mapping algorithm.

1 Compute the size of the given graph G(V,E), denoted as SG
2 Compare the size of data objects in a data cluster and the free

capacity of data servers SD1 , SD2 ,...,SDN
3 if SDα

is greater than SG then
4 Map the data objects in G(V,E) to data server Dα

5 return

6 for i← 1 to 2depthM do
7 Compute the cutting line of the given graph G(V,E)
8 Compute the size of two clusters Y1 and Y2 after cutting
9 if exist two data servers D1 and D2 with capacity larger than

Y1 and Y2 then
10 Choose two data servers D∗1 and D∗2 with smallest distance
11 Map Y1 to D∗1 & map Y2 to D∗2
12 Break

13 else
14 Choose the cluster which cannot be mapped, go to step 6

15 return

our algorithm applies to the data objects in one application
each time, i.e., the correlation of data is calculated based
on the data objects in one application, the depth of six is
enough. We first compare the size of data objects in a data
cluster and the capacity of data servers, and if there exists
a server that can hold the data in the cluster, we map the
data to this server. If not, we further partition the graph into
two parts, Y1 and Y2, to find data servers D1 and D2 whose
free capacities are larger than the size of data objects in Y1
and Y2. To reduce the distance between data objects, we aim
to find two clusters which have the nearest distance among
the candidates which are D∗1 and D∗2. Then, we map these

Table III: Comparison of various replication schemes.

Methods Computational
complexity

Storage
overhead Availability Data

loss rate
RR O(d S

R−1 eN +Smn) O(mn) O(1) O(1)
Copyset O(d S

R−1 eN + SN
R(R−1)mn) O(mn) O(1) O(1)

RDC Polynomial-time
in fixed dimension O(mn) O(1) O(1)

MRR Polynomial-time
in fixed dimension O(mn) O(1) O(1)

Table IV: Parameter settings.
Parameter Meaning Setting
N # of servers 1000-10000
M # of chunks of a data object 3 [53]
R # of servers in each FTS 3
λ # of FTSs containing a pair of servers 1
S Scatter width 4
p Prob. of a server failure (%) 0.5
Pth

r Threshold for expected request failure 0.05
Cth

c Threshold for consistency maint. cost 1000000
Cth

s Threshold for storage cost 300000
m # of data objects in each application 1000
n # of data applications 5

two clusters to the corresponding data servers. If the servers
cannot meet the requirement of capacity, the algorithm further
partitions Y1 and Y2 until it finds enough number of servers to
store the data or the depth of tree reaches six. It is possible that
the algorithm cannot find a subset of servers in which each
has enough space to store the data clusters when the depth
of the tree has reached depthM . In that case, the algorithm
migrates the redundant data objects to adjacent servers who
have enough space available and shortest geographic distance
to the server where the redundant data objects are migrated.

Table III shows the comparison of various replication
schemes on various metrics. RDC and MRR optimize a NLIP
problem. The objective functions of the optimization problem
in RDC and MRR are convex min, and the constraints of the
optimization problem are convex. Thus, the computational
complexity of RDC and MRR is in polynomial-time in fixed
dimension [50].

VI. PERFORMANCE EVALUATION

We conducted the numerical analysis based on the parame-
ters in [18] (Table II) derived from the system statistics from
Facebook, HDFS and RAMCloud [1], [2], [15], [18], [19],
[51], and also conducted real-world experiments on Amazon
S3. The distributions of file read and write rates in our analysis
and tests follow those of the CTH trace [52] provided by
Sandia National Laboratories that records 4-hour read/write
log in a parallel file system.

A. Numerical Analysis Results

We compared MRR with other three replication schemes:
Random Replication (RR) [18], Replication Degree Cus-
tomization (RDC) [13] and Copyset Replication [18] (Copy-
set). RR places the primary replica on a random node (say
node i) in the entire system, and places the secondary replicas
on (R-1) nodes around the primary node (i.e., nodes i+1,
i+2,...)6. RDC derives replication degree for each object with
considering data object popularity to maximize the expected

6RR is based on Facebook’s design, which chooses secondary replica
holders from a window of nodes around the primary node.
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(c) RAMCloud
Figure 5: Probability of data loss vs. number of nodes (R = 3 for RR and Copyset).
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(c) RAMCloud
Figure 6: Probability of data loss vs. number of nodes (R = 2 for RR and Copyset).
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Figure 7: Availability of requested data objects vs. number of nodes (R = 3 for RR and Copyset).
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Figure 8: Availability of requested data objects vs. number of nodes (R = 2 for RR and Copyset).

data availability for non-correlated machine failures. Copyset
splits the nodes into a number of copysets, and constrains the
replicas of every chunk to a single copyset so that it can reduce
the frequency of data loss by minimizing the number of copy-
sets. The number of nodes that fail concurrently in each system
was set to 1% of the nodes in the system [18]. Since this rate
is the maximum percentage of concurrent failure nodes in real
clouds (i.e., worst case) [15]–[17], it is reasonable to see higher
probabilities of data loss and lower expected data availability
in our analytical results than the real results in current clouds.

The distributions of file popularity and updates follow those
of the CTH trace. We used the normal distribution with mean
of 10 and standard deviation of 1 to generate 10 unit costs
for different storage mediums. Compared to uniform machine
failures, nonuniform and correlated machine failures are more
realistic due to different hardware/software compositions and
configurations [13]. Thus, we set w1 = 0.4, w2 = 0.2 and w3 =
0.4 in Equ. (8), respectively. We randomly generated 6 bit
number from reasonable ranges for each node to represent its
location, as explained in Section III-B. Table IV shows the

parameter settings in our analysis unless otherwise specified.
We first calculate the data loss probability for each method7.

Specifically, we used Formula (8) for MRR, Formula (2) for
Copyset, Formula (3) for RR, and Equ. (8) with w1 = 0,
w2 = 0.4 and w3 = 0.6 for RDC. Figure 5(a) - 5(c) show
the relationship between the probability of data loss and the
number of nodes in the Facebook, HDFS and RAMCloud
environments, respectively. We find that the result approxi-
mately follows MRR<Copyset<RDC<RR. MRR achieves up
to 36% lower data loss probability compared to the other three
methods. The probability of data loss in Copyset is higher than
that in MRR. This is because MRR considers non-correlated
machine failures which are not considered in Copyset. RDC
generates a higher probability of data loss than MRR and
Copyset because it neglects reducing the probability of data
loss caused by correlated machine failures. The probability
of data loss in RR is much higher than MRR and Copyset,

7Many datacenter operators prefer to low probability of any incurring data
loss at the expense of losing more data in each event due to high cost of each
incident of data loss [18].
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and also higher than RDC. This is due to two reasons. First,
RR places the copies of a chunk on a certain number (i.e.,
R) of different nodes. Any combination of R nodes that fail
simultaneously would result in data loss in correlated machine
failures. However, MRR and Copyset lose data only if all
the nodes in an FTS fail simultaneously. Second, MRR and
RDC consider data popularity to increase the expected data
availability, which is, however, not considered in RR.

To further verify MRR’s performance in reducing the prob-
ability of data loss, we changed the value of R from 3 to 2, and
kept the other parameters’ settings and formulas for calculating
four methods’ data loss probabilities the same as Figure 5.
Figure 6(a), 6(b) and 6(c) show the relationship between the
probability of data loss and the number of nodes in Facebook,
HDFS and RAMCloud environments with R = 2, respectively.
Similar to Figure 5, we also see that the probability of data loss
follows MRR<Copyset<RDC<RR due to the same reasons.
MRR achieves up to 42% lower data loss probability compared
to the other three methods. Both the result in Figure 5 and
the result in Figure 6 confirm that MRR generates the lowest
probability of data loss. Comparing Figure 6 to Figure 5, we
find that the probability of data loss decreases as the number
of replicas R increases. This is because the more the replicas
for a chunk, the lower the probability that all the machines
storing the chunk fail simultaneously, and thus the lower the
probability of the chunk being lost.

We then calculate the availability of requested data object by
1− P̄r, and P̄r is calculated by Formula (9). Figure 7(a) - 7(c)
show the result of the availability of requested data objects. We
see the result generally follows MRR>Copyset>RDC>RR
in all figures. MRR achieves up to 37% higher availability of
requested data objects compared to the other three methods.
The availability of requested data objects in Copyset is lower
than that in MRR because MRR considers data popularity
when determining the replication degree for each chunk, which
is, however, not considered in Copyset. Also, MRR reduces
data loss in both correlated and non-correlated machine
failures, while Copyset only minimizes the data loss in
correlated machine failures. The availability of requested data
objects in Copyset is higher than that in RDC because RDC
cannot reduce the probability of data loss caused by correlated
machine failures and thereby decreases the availability of
requested data objects. RR has the lowest availability because
RR places the copies of a chunk on a certain number (i.e.,
R) of nodes and any combination of R nodes that fail
simultaneously would cause data loss. Also, RR does not
consider data popularity as RDC. We also varied R from 3 to 2
to better verify the availability of MRR. Figure 8(a), 8(b) and
8(c) show the relationship between the availability of requested
data objects and the number of nodes in the Facebook, HDFS
and RAMCloud environments with R = 2, respectively.
Similar to Figure 7, we also see that the availability of
requested data objects follows MRR>Copyset>RDC>RR,
and MRR achieves up to 35% higher availability of requested
data objects compared to the other three methods, which is
consistent with the result in Figure 7. Comparing Figure 8
with Figure 7, we find that the availability of requested data
objects increases as the number of replicas R increases. This

is because the more replicas for a data object, the lower the
probability of the data object being lost, thus the higher the
availability of the requested data object.

We then used Formula (15) to calculate the storage cost
based on the sizes, replication degrees, and storage medium
unit costs of data objects for MRR. For the other three meth-
ods, we randomly choose storage media for data objects and
do not minimize the storage cost with space capacity constraint
(Inequ. (17)) for RDC. Figure 9(a) - 9(c) show the result of
storage cost. The result in all three figures generally follows
RR≈Copyset>RDC>MRR. This is because MRR stores data
objects into different storage mediums based on their appli-
cations’ priorities, the sizes, and the replication degrees of
data objects to minimize the total storage cost. The storage
costs in Copyset and RR are higher than RDC and much
higher than MRR. RDC reduces the replicas of unpopular data
objects, thus reducing storage cost. Copyset and RR neither
consider the different storage mediums nor reduce the replicas
of unpopular data objects to reduce storage cost. These results
indicate the lower storage cost of MRR by considering both
the data popularity and storage medium cost in replication.

We used Formula (12) to calculate the consistency
maintenance cost of each method based on the geographic
distance and replication degrees of data objects. Figure 10(a)
- 10(c) show the result of consistency maintenance cost. In
these figures, the consistency maintenance costs in Copyset
and RR are higher than MRR because MRR limits the
geographic distance between the replica nodes of a chunk
and the number of replicas, thereby reducing the consistency
maintenance cost. However, Copyset and RR neglect
geographic distances. RDC produces the highest consistency
maintenance cost because RDC neglects geographic distance
and it also generates more replicas for popular data objects.
These results indicate MRR generates much lower consistency
maintenance cost than the other methods.

B. Real-world Experimental Results
We conducted experiments on the real-world Amazon S3.

We simulated the geo-distributed storage datacenters using
three regions of Amazon S3 in the U.S. In each region, we
created the same number of buckets, each of which simulates
a data server. The number of buckets was varied from 5 to 25
with step size of 5 in our test. We distributed 5000 data objects
to all the servers in the system. We used the distributions
of read and write rates from the CTH trace data to generate
reads and writes. The total size of the data objects is 24.4GB.
The requests were generated from servers in Windows Azure
eastern region. We consider the requests targeting each region
with latency more than 100ms as failed requests (unavailable
data objects).8 We used the parameters in Table IV except
p and N. In this test, N is the total number of simulated
data servers in the system and p (with average value 0.089)
follows the actual probability of a server failure in the real

8Since it is hard to generate permanent failures on Amazon S3 and the
network latency is low based on [54], we assume request failure is mainly
caused by machine failures, and we consider the requests targeting each region
with latency longer than 100ms as failed request, which reflects the availability
of data objects.
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Figure 9: Storage cost vs. number of nodes (R = 3 for RR and Copyset).

 

 

 

0

1000000

2000000

3000000

4000000

5000000

Co
ns

is
te

nc
y

m
ai

nt
en

an
ce

 c
os

t

Number of nodes

RR Copyset RDC MRR

(a) Facebook
 

 

 

0

1000000

2000000

3000000

4000000

5000000

Co
ns

is
te

nc
y 

m
ai

nt
en

an
ce

 c
os

t
Number of nodes

RR Copyset RDC MRR

(b) HDFS

0

1000000

2000000

3000000

4000000

5000000

Co
ns

is
te

nc
y

m
ai

nt
en

an
ce

 c
os

t

Number of nodes

RR Copyset RDC MRR

(c) RAMCloud
Figure 10: Consistency maintenance cost vs. number of nodes (R = 3 for RR and Copyset).
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Figure 11: Probability of data loss vs. number of nodes on Amazon S3 (R = 3
for RR and Copyset).
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Figure 12: Probability of data loss vs. number of nodes on Amazon S3 (R = 2
for RR and Copyset).
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Figure 13: Availability of requested data objects vs. number of nodes on
Amazon S3 (R = 3 for RR and Copyset).
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Figure 14: Availability of requested data objects vs. number of nodes on
Amazon S3 (R = 2 for RR and Copyset).

system [8], [9], [55]. We used the actual price of the data
access of Amazon S3 to calculate the storage cost.

Figure 11(a) and 11(b) show the result of probability of
data loss on Amazon S3 when the scatter width (S) equals 2
and 4, respectively. We see the result approximately follows
MRR<RDC<Copyset<RR. MRR achieves up to 16% lower
data loss probability compared to the other three methods. Our
numerical result shows that MRR<Copyset<RDC<RR. Both
results confirm that MRR generates the lowest probability
of data loss. RDC generates higher probability of data loss
than Copyset in the numerical analysis but generates lower
probability of data loss than Copyset in the experiments. This
is because RDC cannot handle correlated machine failures,
and the failure rate of correlated machine failures is 1% in the
numerical analysis but our real-world experiment has fewer
correlated machine failures. We also see that scatter width 2

produces lower probability of data loss than scatter width 4.
This is because a large scatter width increases the number of
FTSs and thus increases the probability of data loss. We then
decreased the value of R to 2 in Figure 12. Figure 12 mirrors
Figure 11 due to the same reasons. Comparing Figure 12 with
Figure 11, we find that the probability of data loss decreases
as R increases because the larger the number of replicas for a
chunk, the lower the probability that all the machines storing
the chunk fail concurrently, and thus the lower the probability
that the chunk is lost.

Figure 13(a) and 13(b) show result of the availability
of requested data objects on Amazon S3 when the scatter
width equals 2 and 4, respectively. We see the result follows
MRR>Copyset>RDC>RR, and MRR achieves up to 7%
higher availability of requested data objects compared to the
other three methods, which is consistent with the result in Fig-



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

75%

80%

85%

90%

95%

100%

105%

5 10 15 20 25

St
o

ra
ge

 c
o

st
 t

o
 C

o
p

ys
et

Number of nodes

MRR Copyset RDC RR

(a) Storage cost

0%

20%

40%

60%

80%

100%

120%

5 10 15 20 25

C
o

n
si

st
en

cy
 m

ai
nt

en
an

ce
 

co
st

 t
o

 C
o

py
Se

t

Number of nodes

RR Copyset RDC MRR

(b) Consistency maintenance cost

Figure 15: Storage/consistency maintenance cost vs. number of nodes on
Amazon S3 (R = 3 for RR and Copyset).
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ure 7 due to the same reasons. We also see that scatter width
2 produces higher availability than scatter width 4 because a
large scatter width increases data loss probability and reduces
data availability. We also decreased R to 2 in Figure 14. Fig-
ure 14 mirrors Figure 13 due to the same reasons. Comparing
Figure 14 and 13, we find the availability of requested data
objects increases as R increases due to the similar reasons
explained in the comparison of Figure 12 and 11.

We then regard Copyset as a baseline and calculate the ratio
of the storage cost and consistency maintenance cost of each of
the other methods over that of Copyset. Figure 15(a) and 15(b)
show the storage cost ratio and consistency maintenance cost
ratio of different schemes, respectively. We see the storage
cost ratio follows RR≈Copyset>RDC>MRR, and MRR
achieves up to 15.3% lower storage cost ratio compared to the
other three methods. The consistency maintenance cost ratio
follows RDC>RR≈Copyset>MRR, and MRR achieves up
to 32% lower consistency maintenance cost ratio compared
to the other three methods. These are consistent with that in
Figure 9 and 10 due to the same reasons.

To measure the Traffic Usage Efficiency (TUE) of network
efficiency (data synchronization) of MRR, we borrow a novel
metric named TUE (TUE = Total data sync tra f f ic

Data update size ) from the
work [56]. Figure 16 shows the relationship between TUE and
the size of created files in the servers. In Figure 16, we see
that TUE decreases as the file size increases, and the drop rate
decreases as the file size increases. As the file size increases,
TUE eventually keeps stable.

C. Clustering and Mapping Performance

To verify the performance of the minimum cut tree-based
clustering algorithm, we compared MRR with minimum cut
tree clustering with the original method (MRR without mini-
mum cut tree clustering) under various scenarios. In exper-
iment, we used the 6-bit number to represent the distance

between two data objects (as explained in Section III-B) and
generated the distance randomly for each data object. We
assume the request time of a data object is proportional to the
distance between the front server and the data server which
stores the data object. For the original method, we acquired m
data objects of the application sequentially without clustering.
Hence, the total request time can be formulated as:

Torig =
m

∑
i=1

ti, (26)

where ti is the time for acquiring the ith data object, and is
related to the size of the data object and the distance between
the request server and the server that stores the data object.

In the minimum cut tree-based clustering algorithm, the
data objects with high correlation would be grouped into
the same cluster and be mapped onto the same data server.
Therefore, for each data object request within one data
cluster, the rest of the data objects in the same cluster would
also be sent to the front server which decreases request
time. In our experiment, the high correlation data is defined
as RT (χ1,χ2) > 0.9 because we assume the correlation is
orthogonal, which means that RT (χ1,χ2) ∈ [0,1]. Then, we
computed the request time for different clusters.

In order to simulate the correlation between data objects,
we chose the Normal Distribution because most of the data
objects have neither a high correlation nor extreme low cor-
relation [57], [58]. Therefore, we believe it is reasonable to
assume the correlation between data objects follows Normal
Distribution. Moreover, we chose the Pareto Distribution for
the same purpose [59], [60], and the results also do not change.

Figure 17(a) and 17(b) show the result of request time
and speedup of data objects with the change of variance of
correlation between data (standard deviation of distribution),
respectively. The speedup is measured by dividing the request
time in original method into that of MRR with minimum cut
tree clustering. Figure 17(a) shows that the request time in
original method remains stable as the variance of correlation
increases. In contrast, the request time in MRR with mini-
mum cut tree clustering decreases as the standard deviation
increases. Figure 17(b) shows that the speedup in general
increases the variance of correlation increases. This is because
the loose distribution of data makes the proportion of high
correlation data larger. Thus, MRR with minimum cut tree
clustering outperforms the original method.

Figure 18(a) and 18(b) show the result of request time and
speedup of data objects with the change of data size (number
of data objects), respectively. The frequency of request is
originally proportion to the data size. Thus, as shown in
Figure 18(a), the request time increases as data size increases.
Also, Figure 18(a) shows that the larger data size brings
more time savings in MRR with minimum cut tree clustering.
Figure 18(b) shows that the speedup is steady in general
but slightly improved as the data size increases. Since the
performance scales up with the data size, it can help further
improve performance by applying the clustering algorithm to
the large dataset in cloud platform. Although the performance
of our algorithm could vary when it is applied to different ap-
plications with different data correlation distribution patterns,
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Figure 17: Performance with and without data clustering when applying
different standard deviation of correlation between data.
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Figure 18: Performance with and without data clustering when applying
different size of data in an application.

the results in Normal Distribution and Pareto Distribution
pattern (which are two common and important distributions)
show the efficiency of the proposed clustering method.

VII. CONCLUSION

In this paper, in order to increase data availability and
reduce cost caused by replication, we formulate a problem
that determines the replication degree of each data object so
that the request failure probability, consistency maintenance
cost and storage cost are minimized in cloud storage in both
correlated and non-correlated machine failures. Based on the
problem solution, we propose the MRR scheme that assigns
the chunk replicas of data objects to the nodes to handle the
aforementioned problems for the objective by considering the
popularity of data. Moreover, we introduce the concept of the
correlation between data objects to analyze the probability of
two data objects being requested concurrently or sequentially
to further reduce the replication cost. Our extensive numerical
analysis and real-word experiments on Amazon S3 show
that MRR outperforms other replication schemes in different
performance metrics. In the future, we will further consider
data update frequency for reducing consistency maintenance
cost, the effects of node joining and leaving, and the influence
of changing network connections. Also we will consider
energy consumption of machines and designing an optimal
replication scheme to save power.
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