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Abstract

In order to fulfill the tremendous resource demand by diverse IoT applications, the large-scale resource-constrained IoT
ecosystem requires a robust resource management technique. An optimum resource provisioning in IoT ecosystem deals
with an efficient request-resource mapping which is difficult to achieve due to the heterogeneity and dynamicity of IoT
resources and IoT requests. In this paper, we investigate the scheduling and resource allocation problem for dynamic
user requests with varying resource requirements. Specifically, we formulate the complete problem as an optimization
problem and try to generate an optimal policy with the objectives to minimize the overall energy consumption and to
achieve a long-term user satisfaction through minimum response time. We introduce the paradigm of a deep reinforce-
ment learning (DRL) mechanism to escalate the resource management efficiency in IoT ecosystem. To maximize the
numerical performance of the entire resource management activities, our method learns to select the optimal resource
allocation policy among a number of possible solutions. Moreover, the proposed approach can efficiently handle a sudden
hike or fall in users’ demand, which we call demand drift, through adaptive learning maintaining the optimum resource
utilization. Finally, our simulation analysis illustrates the effectiveness of the proposed mechanism as it achieves substan-
tial improvements in various factors, like reducing energy consumption and response time by at least 36.7% and 59.7%
respectively and increasing average resource utilization by at least 10.4%. Our approach also attains a good convergence
and a trade-off between the monitoring metrics.

Keywords: IoT resources, Deep reinforcement learning, Demand drift, Energy consumption, Response time, Resource
utilization, Simulation

1. Introduction

The rapid advancement of miniature devices for IoT
brings forth a proliferation of diverse IoT ecosystem ap-
plications under three prominent domains: environment,
society, and industry (Pattar et al., 2018). Considering
the dynamicity of IoT ecosystem and the heterogeneous
resource requirements of concurrent IoT applications, it is
evident that the resource management problem is a sub-
stantial issue in this ecosystem, that needs a prudent at-
tention (Issarny et al., 2016). From service providers’ view-
point, it is desirable that the mapping of IoT application
requests with the available IoT resources must be accom-
plished in such an efficient way that it could be beneficial
for both service providers and clients (Wollschlaeger et al.,
2017). Fig. 1 depicts a typical resource management sce-
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Fig. 1. A typical resource management scenario in context of users
as well as service providers

nario in an IoT ecosystem where, the users request for
different IoT services, and the service providers allocate
IoT resources to accomplish the requests maintaining a
balance between quality and cost. In order to validate
the effectiveness of resource mapping, several important
monitoring metrics such as delay, average waiting time, re-
sponse time, information accuracy, coverage, energy con-
sumption, etc. can be considered (Li et al., 2014). The
entire task of resource management, i.e. resource selection
and resource allocation in an IoT ecosystem faces several
challenges (Delicato et al., 2017; Gubbi et al., 2013):
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Challenge 1. Complex environment: The wide range
of software and hardware devices, a variety of connected
things, and above all numerous end users collectively form
the complex IoT ecosystem. To take the full leverage of
IoT ecosystem, several practical applications are built on
top of this ecosystem. Most of the real-time IoT appli-
cations require a huge amount of sensor data for complex
processing. To extract intelligent information from this
data, there is a great need for storage and processing re-
sources which we actually lack in the current IoT scenario
(Ge et al., 2017).

Challenge 2. Heterogeneity and dynamicity: The het-
erogeneous and dynamic nature of IoT applications as well
as the contributor devices (from miniature sensors to com-
pelling data center nodes), makes the resource manage-
ment a challenging concern (Alam et al., 2017). Moreover,
the highly dynamic execution environment increases the
complexity of this process (Gazis, 2017).

Challenge 3. Resource constrained IoT nodes: Due to
the small sizes and frequently changing location property,
most of the IoT devices are not capable enough to access
the power all the time. So, the low power consumption
is a universal constraint in IoT (Muhammed et al., 2017;
Alaa et al., 2017; Tsiftes & Voigt, 2018).

Challenge 4. Real-time processing: IoT ecosystem po-
tentially deals with up to millions of parallel requests from
a diverse range of smart applications as well as fast re-
sponses within a strict deadline. Real-time and online pro-
cessing of IoT applications have different requirements in
terms of resources, in comparison to applications running
on traditional cloud platforms (Bedi et al., 2018). Thus,
resource management in IoT ecosystem is a challenging
problem of multiple orders that calls for innovative solu-
tions.

Researchers have been made significant efforts towards
finding the solutions for better resource management in an
IoT environment. In our previous survey (Chowdhury &
Raut, 2018), we summarized potential resource manage-
ment schemes that effectively addressed various issues re-
garding IoT resource management. Although progressive
work is going on in this context, some critical concerns as
mentioned below still need to be addressed.

� The dynamic service quality for continuous arriving
IoT application requests should be met.

� Resource management system needs to be more adap-
tive due to the changing IoT environment.

� More automation is required while managing hetero-
geneous resource requirements by IoT applications.

� Quick response with a better longevity of the IoT
network is required.

Revisiting the above challenges, we propose an adap-
tive machine learning approach, i.e., drift adaptive deep re-
inforcement learning based scheduling (DA-DRLS) model
that efficiently schedules the heterogeneous IoT applica-
tion requests in a non-preemptive manner and allocate
adequate resources for processing. Starting from an un-
known task allocation policy, DA-DRLS eventually learns

to carry out a proper action as time progresses in order to
optimize two critical objectives: minimizing energy con-
sumption as well as response time. We model the contin-
uous request arrival pattern as the Poisson process (Adan
& Resing, 2015) where the arrival rate can fluctuate in a
peculiar manner as the demand changes suddenly. DA-
DRLS can quickly adapt this sudden change in demand
that we named as demand drift through adaptive learning
while optimizing our primary scheduling objectives.

Contributions: The key contributions of this paper
are summarized as follows:

� We design DA-DRLS, a deep reinforcement learning
based scheduling model that aims to find an opti-
mal policy for automatic resource allocation to the
requests in an IoT ecosystem while minimizing the
two important objectives: energy consumption and
response time.

� DA-DRLS is adaptive to changes in the demand by
continuously observing demand drift and taking coun-
termeasures to update the allocation policy dynam-
ically. To the best of our knowledge, this is the first
attempt to tackle such circumstances during resource
management in an IoT environment.

� To dynamically adjust the weights of the policy pa-
rameters, DA-DRLS provides a trade-off option be-
tween different policy parameters for service specific
modifications.

� We evaluate the performance of DA-DRLS with vary-
ing arrival rates of the requests to ensure that our
model can perform efficaciously under heavy traffic
flow as well. It performs better than state-of-the-
art approaches in context of energy consumption,
response time, and resource utilization.

Roadmap: In the subsequent sections of the paper,
Section 2 discusses about some relevant work done in this
area. Section 3 demonstrates the problem formulation.
In Section 4, we describe the modeling of IoT requests
with the resources, whereas, Section 5 provides a detailed
description of our complete resource scheduling method.
A meticulous analysis of our proposed DA-DRLS method
with respect to several objectives is presented in Section 6.
Section 7 provides some notable observations and finally
Section 8 concludes the paper with the final remarks.

2. Related Work

Sensor based IoT devices have limited energy, and pro-
cessing capabilities, thus they are often not adept to ex-
ecute sophisticated processing of huge data generated by
vast IoT devices. This instigates one of the major chal-
lenges of IoT ecosystem, i.e., efficiently manage the scarce
resources especially the energy resources. Aiming this
challenge, abundant research has been carried out in recent
years, including power saving (Taneja, 2014; Van et al.,
2016; Kumar et al., 2018), energy efficient allocation (Zhai
et al., 2018; Wang et al., 2016; Sarangi et al., 2018), energy
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harvesting (Sanislav et al., 2018; Yang et al., 2017; Kama-
linejad et al., 2015), etc. Also, potential algorithms have
been evolved addressing several other important quality
of service (QoS) parameters, such as response time, cov-
erage, delay, throughput (Delicato et al., 2017),(Narman
et al., 2017; Sharma et al., 2018; Sohn et al., 2018; Leu
et al., 2014), and so forth. However, there is relatively
little work on developing a general purpose resource man-
agement strategy based on machine learning as a sustain-
able preference than traditional human-generated heuris-
tics. In this paper, our main intention is to provide a pow-
erful machine learning approach for IoT resource manage-
ment in order to handle dynamic IoT requests. Therefore,
we concentrate more on machine learning based resource
scheduling schemes available in IoT ecosystem and several
related domains while omitting the details regarding other
resource management schemes for IoT.

Reinforcement learning (RL), an active research area
of machine learning, enables wireless networks to observe
their specific environment, and eventually learns to take
optimal or near optimal scheduling decisions in spite of
different levels of dynamicity in the corresponding oper-
ating environment (Yau et al., 2013). Xue, Yuan, et al.
(Xue et al., 2008) proposed a distributed RL approach to
provide QoS differentiation among different prioritized re-
quests as well as to ensure a better network performance,
such as delay, throughput, and spectrum utilization. An-
other RL based spectrum selection mechanism was devel-
oped by Di Felice, Marco, et al. (Di Felice et al., 2011) that
effectively learns to make a perfect balance between sens-
ing, transmitting and switching of channels; thus, achieved
a significant performance gain in terms of throughput.
To reduce the end-to-end delay, Bhorkar, Abhijeet A., et
al. (Bhorkar et al., 2012) suggested an RL framework
which can find the nearest route through opportunistic
routing. In a wireless sensor network (WSN), coopera-
tive learning allows neighboring nodes to share informa-
tion among themselves in order to accelerate the learning
process and to gain prolong network life (Khan & Rinner,
2012). Wei, Zhenchun, et al. (Wei et al., 2017) proposed a
job scheduling method based on Q-learning (a popular RL)
with shared value function. The method significantly re-
duces the switches between nodes; hence, achieves a better
performance with less energy consumption than coopera-
tive Q-learning. To reduce the overall energy consumption
in an IoT sensory environment, an RL based power saving
mechanism was proposed by TS Pradeep, et al. (Kumar
& Krishna, 2018) at different layers in IoT. Based on the
eminence of different types of tasks, the system learns to
trigger an action on high power mode or low power mode
which in turn results in low energy consumption. De-
spite that, RL suffers due to the complexity of RL-based
scheduler, the complexity increases as the number of state-
action pairs increases. To overcome this condition, deep
RL (DRL) schemes that use deep neural network (DNN),
are being studied nowadays and are attaining much atten-
tion in several application domains, such as in VANET for

vehicle image classification (Zhao et al., 2017), medical do-
main to learn a policy for optimal dose to a person (Nemati
et al., 2016), and traffic signal monitoring system (Li et al.,
2016). DRL is also being adopted notably for resource
management in different operating environments. Mao,
Hongzi, et al. (Mao et al., 2016) devised a method where
DRL efficiently schedules jobs with multiple resource de-
mands while minimizing the average slowdown. In this
approach, the reward function has been defined based on
the reciprocal duration of the task in order to direct the
agent towards the target. Different classes of prioritized
traffic in IoT can be scheduled optimally by effective use
of network resources to avoid channel congestion. Chin-
chali, Sandeep, et al. (Chinchali et al., 2018) presented a
DRL based scheduler that can dynamically adapt to traf-
fic differentiation, and to the respective reward functions
set by network administrators, to optimally schedule IoT
traffic. So far, the literature discussed regarding resource
management with RL, one important limitation is that
the dynamicity, and uncertainty of modern operating en-
vironment like IoT ecosystem are not addressed properly.
As the operating environment does not remain consistent
for a longer period of time, the learning agent must un-
learn the previous knowledge as it may become outdated,
and quickly learn about the new atmosphere by increas-
ing the learning rate. Once learned, it should maintain
the previous learning rate. Thus, while managing the IoT
resources and scheduling user requests through RL, a bal-
anced trade-off should be maintained by carefully adjust-
ing the learning rate parameter, which motivates the work
of this paper.

3. Problem Formulation

The problem addressed in this paper is the allocation
of IoT resources to service requests generated by the users
within an IoT ecosystem in an energy efficient and highly
responsive manner. A typical IoT ecosystem contains a
collection of heterogeneous resources, and each service re-
quest (SR) is provided with different instances of these
resources as per the necessity. This allocation of resources
requires effective decision making so that overall quality
of service (QoS) can be maintained. Each resource has a
particular energy requirement based on its capacity for its
working and hence, the allocation should include a trade-
off between the QoS and overall energy consumption. The
trade-off is application specific. Let us consider the follow-
ing three cases:

Case 1: High QoS is required, for example, in case of
smart health monitoring.

Case 2: Efficient energy consumption is required due
to long time functionality of the devices for several IoT
applications, for example, in case of weather monitoring.

Case 3: A balance between two parameters is required,
like, in case of smart homes.

So, formally, our objective is to devise an optimal pol-
icy for a request to resource mapping that will maximize
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the QoS and minimize the overall energy consumption
(EC) in a resource constraint IoT ecosystem. Let the IoT
resource pool {RS} contain a set of n heterogeneous types
of resources as {RS1︸︷︷︸

rs1

, RS2︸︷︷︸
rs2

, ..., RSn︸︷︷︸
rsn

} ∈ {RS}. Each ser-

vice request has a specific set of resource demand (SRi =
rsi1, rsi2, ..., rsij︸ ︷︷ ︸

rsi

) for j (j <= n) different types of re-

sources. The resource allocation process provides a map-
ping between {RS} → {rsi}. Now the objective is to max-
imize the QoS and minimize energy consumption for each
service request i.e. max(QoS(SRi)) and min(EC(SRi))
so that a cumulative maximization of QoS and cumula-
tive minimization of energy consumption can be achieved.
Precisely, the problem is formulated as the following opti-
mization problem:

Resource(SRi) = A(SRi, π(SRi))

π(SRi) = Max
(∑
∀i

QoS(SRi) +
∑
∀i

1

EC(SRi)

)
(1)

where, Resource(SRi) is the resultant resource map-
ping for a service request SRi, A() is the allocation func-
tion for service request SRi using the required policy π(SRi).
To have a trade-off between QoS provided to the users
and the overall energy consumption, the following trade-
off equation is used, where, the trade-off parameter η can
be adjusted according to the specific demands of the users.

π(SRi) = Max
(
η
∑
∀i

QoS(SRi) + (1− η)
∑
∀i

1

EC(SRi)

)
(2)

An important non-functional requirement that relates
to QoS is Service Level Agreement (SLA) (Alodib, 2016)
which becomes increasingly important in the IoT ecosys-
tem. Due to the dynamic nature of IoT ecosystem and
its complex processing, it is challenging to achieve the
targeted QoS. Therefore, in order to avoid customer dis-
satisfaction, QoS requirements are declared by imposing
binding SLAs. SLAs are the contracts perceived to exist
between the service provider and users. Thus, to provide
guaranteed system performance, we formulate our objec-
tive function as:

π(SRi) = Max
(∑
∀i

1

RT (SRi)
+
∑
∀i

1

EC(SRi)

)
subject to RT (SRi) ≤ SLR

(3)

where, RT (SRi) is the response time which ensures the
QoS(SRi), and EC(SRi) is the overall energy consump-
tion for processing the ith service request.

This simple generalized objective function given in Equa-
tion 3 (detailed in Section 5 as the reward function) has a
multifarious perspective:

� The allocation of resources to each service request
can be done in many possible ways; our target is to

select the optimum suitable policy for allocation
while maximizing the objective function.

� The policy of allocation should provide a long-term
benefit instead of a short-term profit.

� Arrival of the service requests is unpredictable as it
depends on the user requirements which can change
over time. So, here can be a change in the service
arrival scenario (a demand drift) which affects the
existing policy. Therefore, policy update needs to
be done whenever a demand drift occurs.

A demand drift is the statistical change in service de-
mand over a period of time. The detection of demand drift
must be done by monitoring the service arrival patterns.
Once it is detected, the allocator must update the policy
for such dynamic nature of the operating environment.

Therefore, the overall scheduling of the IoT resources
is an optimization problem, and we try to solve it using a
first-order iterative optimization algorithm, i.e., gradient
descent. To address this entire problem, first, we need to
model this problem.

4. System Model: IoT Request-Resource Mapping

We adopt Markov Decision Process (MDP) to model
decision making and optimization of resource allocation
process to answer the service requests in an IoT ecosystem.
Modeling the complete resource management scenario re-
quires an efficient modeling of service arrival process and
then forming the desired scheduling policy for proficient
mapping of system resources with the incoming requests.

4.1. Modeling Requests Arrival Process

We consider the collection of different heterogeneous
resources as one resource pool which can be synthesized as
a single server with multiple resources. A service request
can demand a random amount of subset of resources from
the resource pool. Arrival of these incoming requests in
an IoT ecosystem can be modeled using an M/M/1 queue
model where heterogeneous user requests follow the Pois-
son process with arrival rate λ and the service times follow
an exponential distribution with mean 1/µ. The Poisson
process is one of the most commonly used models for differ-
ent stochastically independent requests (Adan & Resing,
2015; Abdullah & Yang, 2014). Each request arrives with
a request vector which specifies the amount of resources
required over its indices. To reduce the complexity of pol-
icy generation (though M/M/1 queue has an infinity buffer
capacity), we consider a batch of requests with length m
for scheduling purpose and policy generation while consid-
ering the remaining requests that are going to be processed
in the next slot residing in a buffer of length M for ready
reference.

4.1.1. Request Queue

As soon as any request arrives, it is added to the re-
quest queue. The resource allocation process always keeps
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Fig. 2. Queue management for request processing

Fig. 3. The policy generation model in context of an IoT
ecosystem

track of the request queue and generates the policy to al-
locate resources to the SR in the queue. Whenever the
required resources are available for the requests in the
queue, the service requests are removed from the queue
and resources are allocated. The length of the queue is
a crucial factor and affects the performance of the over-
all system. Fig. 2 illustrates that we consider a batch of
size m requests from M/M/1 queue for resource scheduling
purpose.

4.1.2. Response Time

Considering the system is in a stable state, we can ob-
tain mean response time using the Little’s law (Adan &
Resing, 2015) as: Mean number in the system = Arrival
rate (λ) * Mean response time (RT ).

RT =

(
ρ

1− ρ

)
1

λ
; where, ρ =

λ

µ
= effective utilization

thus,RT =

1
µ

1− λ
µ

; subject to 0 < λ < µ

(4)

4.2. Deep Reinforcement Learning Model

The absolute IoT scheduling process is synthesized us-
ing deep reinforcement learning which is based on an MDP
model as the quality of resource mapping process is en-
hanced with repeated steps. The main constituents of a
basic MDP model are state, action, and reward. A basic
policy generation model is shown in Fig. 3.

� A state st is a fully encapsulated information about
an IoT ecosystem at time t which represents the
decision-making factors.

� An action at is the allocation of resources to the in-
coming IoT service requests. After performing each
action, there is a transition from current state st at
time t to a new state st+1 at time t+ 1.

� Reward Rt = R(st, at, st+1) is the feedback from the
system after a change in the current state of the sys-
tem. Based on the effects on network performance,
a positive or negative reward is received every time
when an agent performs an action.

In context of an IoT ecosystem, each state provides ab-
stract information about some parameters, and values of
these parameters are changed when the system passes to
the next state after performing an action. Further, these
parameters or we can say the monitoring metrics are used
to monitor the states of the system. The values of these
metrics provide an inference that, whether the system is
in a good state or not? The results of monitoring metrics
can be understood as a feedback of the action resulting in
the current state. For each resource allocation action, a
feedback can be recorded which is the ultimate reward for
that particular action. The trivial task is to decide this
feedback and generate a policy π(s) : st → at (i.e., π(s) =
at) based on this feedback that maximizes the cumulative
rewards: Rt =

∑∞
t=0 γ

tRat(st, st+1), where, γ is a discount
factor or delayed reward parameter, s.t. 0 ≤ γ < 1 . Con-
sidering the monitoring metrics as response time (RT )
and energy consumption (EC), the reward should be pro-
vided to the action based on the results of these param-
eters. The scheduling approach should predict the conse-
quences of the actions and decide whether to execute those
actions or not. It is better to predict the effect of an allo-
cation on the IoT ecosystem prior to the actual allocation
of resources.

4.2.1. Deep Neural Network

A deep neural network (DNN) model can effectively
be applied in those applications where the number of pos-
sible states are significantly large. Recently, it is being
widely used to function approximation, classification, and
prediction purpose for large-scale RL tasks. Motivated
by the high accuracy of DNN (Mnih et al., 2013; Alam
et al., 2016), we take the advantage to use the combina-
tion of DNN with RL, jointly known as Deep Reinforce-
ment Learning (DRL), for decision making during resource
scheduling through an ideal learning.

4.2.2. Demand Drift

The current service arrival scenario gets changed when
there is a change in the demand. To reflect the dynamic-
ity of IoT ecosystem, we consider sudden fluctuations in
the request arrival pattern. It is a challenge to make the
scheduling process adaptive to these changes, as it requires
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Fig. 4. The proposed model with continuous arrival of user
requests. The agent allocates resources based on the policy, and
monitoring metrics are used to update the policy based on rewards,
drift detector detects and notifies the agent.

a re-optimization of the objective function. To overcome
this challenge, we propose a dynamic adaptive technique
which can allocate adequate resources to the incoming re-
quests even when there is a demand drift.

5. DA-DRLS: Drift Adaptive Deep Reinforcement
Learning based Scheduling

To schedule the incoming service requests reside in the
request queue, the proposed approach DA-DRLS, as de-
picted in Fig. 4, tries to find the appropriate resources
for allocation by selecting an optimal policy in context of
RT and EC. DA-DRLS includes the following five essential
steps:

� Exploration of the complete environment and gener-
ation of different possible policies (trajectories).

� Estimation of the expected reward for each trajec-
tory which is inversely proportional to response time
and energy consumption.

� Maximization of the expected cumulative rewards.
� Exploitation of the policy with the maximum reward

for the resource allocation.
� Monitor and adaptation according to the environ-

mental changes.
Some commonly used notations in the paper are de-

scribed in Table 1.

5.1. Probabilistic formulation of resource allocation sequence

A resource allocation sequence is a possible allocation
scheme for allocating resources to the current IoT service
requests. It consists of a request to resource mapping. A
number of possible mappings are possible which can be
estimated using combinatorics. MDP which is basically
an extended Markov Chain with augmented state space,
is used to generate all these sequences. A possible resource
allocation sequence is a sequence of states and actions of
MDP model. To generate the best trajectories, we consider
the following:

� Probability of a possible allocation is synthesized as
a change in a state.

Table 1: Common notations with descriptions

Notation Description
S Set of states
A Set of possible actions
r() Reward function
s s ∈ S
a a ∈ A
T Total number of states
τ A trajectory of length T which is a sequence of

states and actions
ω Policy parameter
χ Policy for scheduling
N Number of episodes
Rs Cumulative reward at state s
α Learning rate for policy update
∇ω Gradient for policy update
γ Delayed reward parameter

� Formulation of the distribution of resource allocation
policy parameterized by a policy parameter.

To perform an efficient scheduling, we require an op-
timal policy χω parameterized by a policy parameter ω.
The probability of changing a state from state st to st+1

is given by MDP transition probability (Bellman & Drey-
fus, 2015) as shown in equation 5.

p
((
st+1, at+1

)∣∣(st, at)) = p
(
st
∣∣st, at)χω(at+1

∣∣st+1

)
(5)

Exploration process over states and actions gives rise to
a distribution over state and action sequences parameter-
ized by ω which is exactly needed to approximate. There-
fore, if we have a time horizon of length T (length of se-
quence = T ), then the policy or distribution is given by:

pω
(
s1, a1, ..., sT , aT

)
= p
(
s1
) T∏
t=1

χω
(
at|st

)
p
(
st+1|st, at

)
(6)

5.2. Feedback of allocation and its maximization

Each state of the IoT ecosystem state model provides
an abstract information about the monitoring metrics which
can be a combination of several other parameters. For the
proposed work, we consider the response time and energy
consumption as the prominent parameters. The abstract
information for state s and action a is given by the follow-
ing reward function:

r(s, a) =
1

RT (s, a)
+

1

log(EC(s, a))
(7)

where, RT () and EC() are the resultant response time
and energy consumption of the system at state s.

Response Time: Response time is the difference be-
tween the arrival time and the time at which the resources
are allocated to a service request. RT (s, a) is the average
response time for the service requests allocated at state s
by taking action a. Average response time can be calcu-
lated using Equation 4.
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Energy Consumption: The energy consumption after
state s is the aggregated sum of energy consumption of
the L allocated service requests at state s.

EC(s, a) =

L∑
l=1

(
EC(SRsl )

)
(8)

The overall objective is to minimize both of these pa-
rameters which results in maximization of Equation 7.
This objective can be achieved by maximizing the objec-
tive function over all the states in the consecutive explo-
rations. Indeed, the maximization results in a distribution
over states and actions which can be used as a policy es-
timator to schedule the set of requests. The policy which
maximizes the expected value Eτ∼pω(τ) of reward (Mnih
et al., 2013) can be estimated as a chain of states, actions,
and a trajectory τ sampled as pω(τ), is given by:

ω∗ = argmaxωEτ∼pω(τ)

[ T∑
t=1

r
(
st, at

)]
(9)

Where, ω∗ is the estimated policy for a trajectory τ of
length T . This can also be written as:

ω∗ = argmaxω

T∑
t=1

E(st,at)∼pω(st,at)

[
r
(
st, at

)]
(10)

Equation 10 is basically an optimization function that
needs to be maximized by altering ω which defines the
policy of resource allocation. To estimate an optimal value
ω∗, a gradient is required to modify its value for different
scenarios.

5.3. Policy generation process

A policy should be selected after a certain number of
explorations, and the exploration parameter decides the
number of explorations required before finalizing the pol-
icy. Each exploration generates a particular trajectory, the
optimum trajectory from already generated trajectories is
used for further exploration. Thus, after the formation
of all possible trajectories, the best suitable trajectory is
selected. This process includes mimicking all the possible
trajectories by adopting a DNN which is used to increase
the probability of selecting a suitable trajectory with the
help of a gradient. The resultant maximum probable tra-
jectory is used for resource allocation or further explo-
ration. We consider the standard reinforcement learning
framework in which a learning agent interacts with IoT
ecosystem that is modeled as MDP. The state, action, and
reward at each time instance t ∈ {1, 2, ..., T} are denoted
as (st ε S, at ε A, and r(st, at)), respectively. We focus on
a course of policy gradient based RL algorithm that learns
by performing gradient-descent on the policy parameters.
The policy gradient is used to update the policy due to its
adaptability with the DNN. The objective is to maximize

the anticipated aggregated reward (Mnih et al., 2013; Bell-
man & Dreyfus, 2015). The slope of the objective function,
i.e. Equation 10 is given by:

∇ω = Eτ∼χω(τ)

[
T∑
t=1

∇ωlogχω(at|st)
T∑
t=1

r(st, at)

]
(11)

Here,
∑T
t=1 r(st, at) is the anticipated total reward (de-

terministic) for choosing action a in state s, and in this
way it proceeds following χω. The key thought in pol-
icy gradient strategy is to assess the angle by observing
the direction of execution that is obtained by pursuing
χω. The magnitude of action in the direction of the gra-
dient is parameterized by the second term which is aggre-
gated reward in Equation 11. For our aimed approach, we
use a delayed reward strategy using γ parameter. The re-
ward at a state st is the cumulative sum of rewards of the
states {st+1, st+2, ..., sT } which can be reached from cur-
rent state discounted by γ. This cumulative reward at a
state s

′ ∈ {1, 2, ..., T}, given by Equation 12, is considered
as the magnitude of gradient for the proposed approach.

Rs′ =

T∑
t=s′

γt−s
′

rt (12)

By using Monte Carlo strategy (Schulman et al., 2015),
the agent generates sample trajectories and applies them
to compute the cumulative discounted reward as an un-
biased estimation of the feedback from IoT ecosystem.
Based on this feedback, the agent updates the policy by
updating ω using Equation 11 and 12 as given in Equation
13 while using a learning parameter α to regulate the step
size of the gradient.

ω ← ω + α∇ωlogχω(at|st)Rs′ (13)

5.3.1. Scheduling agent

The decision maker for electing appropriate actions is
the agent, and the complete IoT ecosystem is the agent’s
environment. The agent picks actions based on a policy,
characterized as a probability distribution over actions. χ
: χ(s, a) → [0, 1]; χ(s, a) is the probability that action a
is taken in a state s. The agent observes the environment
through perceptions and is influenced by taking actions.
The agent completes the following tasks before performing
the allocation.

� It generates trajectories using Equation 5,6.
� It estimates the expected reward using Equation 7.
� It performs the optimization through Equation 10.
� It monitors changes in the environment and ensures

its adaptability using drift adaptive learning in Sec-
tion 5.4.

Fig. 4 portrays the complete proposed approach where,
the agent generates the policy based on the DNN network
labeled as policy making in the figure. Algorithm 1 shows
the complete process of policy generation and its updating
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Algorithm 1: DRL Scheduling

Result: Policy generation
1 Input: Set of Service Requests (SR)
2 for each timestep do
3 ∇ω = 0
4 for each incoming set of request do
5 while episode i ≤ N do
6 α = Drift−monitoring()

7 explore pω
(
si1, a

i
1, ..., s

i
T , a

i
T

)
=

p
(
s1
) T∏
t=1

χω
(
at|st

)
p
(
st+1|st, at

)
= χωχωχω

8 for j=1 to T i do
9 calculate rij(sj , aj)

10 end
11 for j = 1 to T i do

12 Rij =
∑T i

t=j γ
t−jrit

13 end
14 for t = 1 to T i do
15 ∇ω = ∇ω + α∇ω logχω(ait|sit)Rit
16 end

17 end

18 end
19 ω = ω +∇ω
20 end

process after several explorations. The complete model is
explored, and N trajectories of length T are generated as
shown in line 7. The reward for each state and action of
each explored trajectory is calculated as shown in lines 8
to 10. A cumulative discounted reward is calculated (lines
11 to 13) using discount parameter γ. The gradient and its
magnitude are calculated and the policy is updated using
∇ω. The slope ∇ω of the objective function in Equation
10 is actually a matrix of order T ×N which is then added
to the existing policy parameter matrix ω. Our proposed
approach also monitors the incoming services and detects
any change in their patterns and thus updates the policy.
The agent gets notified by the drift monitoring process
whenever a drift occurs.

5.4. Drift adaptive learning

Algorithm 1 uses drift-monitoring() function to get the
value for learning parameter. The objective of this func-
tion is to monitor the changes and perform the desire ac-
tions when the amount of change is greater than a thresh-
old value δ. Kullback-Leibler (KL) Divergence (Bigi, 2003)
is used to measure the dissimilarity between the arrival
rates at two different time instances of the incoming ser-
vice requests. This dissimilarity can be considered as de-
mand drift and the drift management requires its proper
identification and quantification from continuously arriv-
ing service requests. Consider that the service arrival fol-
lows a true probability distribution G(X) over a global

Algorithm 2: Drift-monitoring()

Result: Learning parameter
1 α= Learning parameter
2 Service arrival distribution B
3 for each monitoring timestep do

4 get the current service distribution B
′

5 Measure the KL-Divergence for service arrival
rate

6 KL = D(B||B′
)

7 if KL ≥ δ then
8 α = α ∗ 1.5
9 return α

10 end
11 else
12 return α
13 end

14 end

service instance X and in a limited time horizon, an ar-
bitrary probability distribution B(x) is observed (where
x ∈ X). If there is a change in the observed service ar-
rival distribution, it increases or decreases the number of
waiting requests in the queue over time. Considering two
service arrival distributions B and B

′
, B in the previous

instance and B
′

in current instance, the distance between
them is calculated using KL divergence or relative entropy
as:

DDD(B||B
′
) =

∑
x∈X

B(x)log
B(x)

B′(x)
(14)

So, if there is a sudden change in the arrival pattern of
the services, then this sudden change will result in stale-
ness in the learned network. There are two ways to adapt
these changes; one is to naively relearn the complete net-
work and the second is to perform the learning with a
higher learning rate as used in the dynamically updating
surrogate (Schulman et al., 2015) systems. To update the
system according to the changing environment, an adap-
tive learning approach is proposed in which learning rate is
updated as described by Drift−moniroing() function in
Algorithm 2. The threshold value δ (Kifer et al., 2004) is
used to regulate that when the learning rate should be up-
dated. It has been empirically observed that with δ = 0.05,
less number of policy updates are required to achieve the
desired objectives.

6. Evaluation

We have performed a rigorous simulation analysis to
evaluate the performance of DA-DRLS. The ultimate aim
of our evaluation is to answer the following obvious queries
regarding resource management in IoT ecosystem at present
scenario.
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� How to optimize the constraints of IoT resource man-
agement?

� How much improvement in the performance as com-
pared to other benchmark algorithms in terms of re-
sponse time and energy consumption?

� How efficiently it utilizes the system resources?
� How does the proposed approach achieve the final

solution while there is a demand drift?
� How much re-optimization is required whenever a

demand drift occurs? How quickly it converges?
� How does the trade-off affect the output?
� How much execution time it requires to perform schedul-

ing?
Simulation Setup: We have simulated our proposed ap-
proach using Keras (Chollet et al., 2015) with Theano
(Bastien et al., 2012) python3 library which helps to ef-
ficiently optimize mathematical expressions. The system
configuration is: 8 GB RAM, Intel(R) Core (TM) i5-6200U
CPU @ 2.30Ghz, 2.40 GHz with 64-bit operating system.
We have used synthetic dataset (Akdere et al., 2008; Ghosh
& Simmhan, 2018) for this analysis in which service re-
quests are generated using Poisson process. To emulate
the real time IoT scenario, a range of arrival rates from
0.2 to 0.9 under the same service time constraint is consid-
ered for the service requests. Each service request, gener-
ated by this process, is a combination of different amount
of resources required to satisfy that request. Each ser-
vice request demands resources in form of a request set
{r1, r2, ..., rn} for a time t; {1t to 5t}. Each ri entry in
the request set is the amount of ith resource required by a
service. The resource pool contains n different types of re-
sources R1, ..., Rn, we have considered n = 5, and there are
5 instances of each resource type. Each resource instance
is available with a random capacity of rcij (j = 1 to 5)
unit between 10 − 100. For simulation purpose, we have
assumed each resource instance is provided with an en-
ergy consumption requisition for its functioning which is
eij = ((rcij/10) ∗ t) Joule. The resource capacity is di-
vided by 10 to get a normalized energy consumption re-
quirement proportional to the capacity of that particular
resource. An instance of a resource is allocated to the
service request at a time. We have assumed that all the
resources are active and a request will be processed only
when its entire resource demand gets fulfilled. No fraction
allocation is possible for a particular resource demand.

The agent considers a set of service requests of length
10 for allocation of the resources and service requests be-
yond 10 as pending requests. It uses count of these pending
requests (we set maximum pending requests = 20) while
exploring for the optimal policy.

The amount of different resources required by each ser-
vice is randomized using a random function. The complete
approach is analyzed by running 20 Monte Carlo simula-
tions (Schulman et al., 2015) while having exploration pa-
rameter ranging from 50 to 10000. For the ease of under-
standing, we have divided this range into 10 parts named
simulation episode as shown in Table 2.

Table 2: Analysis of reward while increasing the number of
explorations

Simulation
Episodes

No.of Explo-
rations

Maximum Re-
ward

1 50 -26.17
2 100 -24.233
3 150 -23.132
4 200 -23.0313
5 250 -23.302
6 300 -23.0291277
7 400 -23.0290063
8 500 -23.02897605
9 2000 -23.023376
10 10000 -23.023365

An allocation policy is generated by mimicking all pos-
sible allocations in form of an MDP model. The state
transition probabilities of the MDP model are considered
to form different trajectories of a DNN. We have employed
a fully connected DNN with one hidden layer and 20 neu-
rons (Mao et al., 2016). The policy is generated by opti-
mizing the weights using gradient from Equation 11. The
learning rate used for the DNN is 0.001 (Xu et al., 2017)
and in case of demand drift, Algorithm 2 is used to up-
date the learning rate for instant adaptability. Once the
simulation is started, no preemption will occur as we have
not considered any priority level of the requests.

In order to validate the efficacy of our proposed ap-
proach, we have compared DA-DRLS with three stan-
dard approaches; First Come First Serve (FCFS), basic Q-
Learning approach (Huang et al., 2011; Peng et al., 2015)
while considering only response time (QLR) as a monitor-
ing parameter, and Q-Learning approach while considering
both the response time and energy consumption (QLRE)
as the monitoring metrics. The next consecutive subsec-
tions demonstrate a meticulous analysis considering some
eminent aspects in this regard.

6.1. Performance Analysis with varying Arrival Rates

Fig. 5 and 6 respectively plot the optimal energy con-
sumption and response time (as per their specific objec-
tives) of DA-DRLS, FCFS, QLR, and QLRE over different
arrival rates after performing different number of explo-
rations. As the arrival rate increases, the number of re-
quests increases and the number of pending requests also
increases which in turn result in higher energy consump-
tion and response time. Clearly, our proposed approach
achieves a significant amount of improvements for both
the two monitoring metrics at each arrival rate than other
three approaches. From Fig. 5, we can observe that FCFS
uses maximum energy for every arrival rate as it is the ba-
sic scheduling approach and used in simple small systems.
It cannot perform intelligent operations, so is not efficient
for the complex ecosystem like IoT where its heterogeneous
requests need different length of resources. QLRE shows
better performance than QLR because QLRE uses energy
consumption as a parameter in its optimization function.
However, QLRE has to explore all combinations of states
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Fig. 5. Energy consumption analysis while increasing the service
arrival rate

Fig. 6. Response time analysis while increasing the service arrival
rate

and actions, resulting in a large number of possible states
which in turn requires higher computation to generate the
required policy. Our method, DA-DRLS on contrary, does
not calculate the exact value of the optimization func-
tion and estimates its value using policy gradient. Thus,
DA-DRLS achieves an early convergence, thereby reduc-
ing overall energy consumption than QLRE. On an average
DA-DRLS consumes a less energy of 58.02% than FCFS,
56.27% than QLR, and 36.70% than QLRE.

Fig. 6 shows the response time analysis. For the same
reason as energy consumption analysis, DA-DRLS outper-
forms all the three techniques by a reduction of 90.2%,
59.7%, and 66.2% than FCFS, QLR, and QLRE respec-
tively. Here, one interesting point should be noticed that
QLR has lower response time than QLRE. This is because
QLR only considers response time in its Q function where
QLRE needs to consider both response time and energy
consumption.

In the rest of the analysis, we have fixed arrival rate pa-
rameter as 0.7 to ensure a balanced and reasonable amount
of load in the system and investigated the outcomes with
different exploration counts.

Table 3: Optimal energy consumption and response time at 10000
exploration count for DA-DRLS, QLR, QLRE, and FCFS

DA-DRLS QLR QLRE FCFS

Iterations 10000 10000 10000 NA
Max Rewards -23 -44 -38 NA

Energy Consumption 133 280 168 345
Response Time 1.96 2.56 3.15 6.5

Table 4: Analysis of energy consumption (Joule) while increasing
the number of episodes and optimizing energy consumption

Simulation
Episodes

No.of Ex-
plorations

DA-DRLS QLR QLRE FCFS

1 50 254 344 264 345
2 100 205 317 235 345
3 150 151 277 220 345
4 200 141 300 205 345
5 250 138 340 196 345
6 300 137 345 196 345
7 400 139 299 178 345
8 500 134 280 175 345
9 2000 134 341 172 345
10 10000 133 317 168 345

6.2. Reward

As the exploration proceeds, the reward gets updated
as described in Algorithm 1. The average reward value is
observed while varying the number of explorations (N in
Algorithm 1) from 50 to 10000, Table 2 illustrates these
observations. The reward value is considered as optimized
when the amount of changes in the objective parameters is
notably less. Early smoothness means that the maximum
reward is achieved with less number of explorations. The
approximate highest reward can be achieved with only 150
explorations, although for a robust scenario the value of
this parameter is kept large. The overhead of large value of
this parameter (exploration) is not directly proportional to
its quantity because as the system achieves the maximum
reward, it requires less computation to get that reward
again. So, in the initial iterations, the agent takes longer
time to achieve the reward as compared to the subsequent
iterations. Table 3 shows the best result obtained after
running 20 simulations with 10000 explorations each and
a comparison with other approaches for reward based on
energy consumption, and response time.

6.3. Energy Consumption

The overall energy consumption for completion of a ser-
vice request SRl, l ∈ L, is given by

∑
∀rcij→SRl

eij , where,
∀rcij → SRl are the resources allocated to SRl request.
To reduce the complexity of the energy consumption anal-
ysis, the energy required for allocation process is ignored.
With the increasing number of explorations from 50 to
10000, the proposed approach moves towards the optimal
solution and the energy consumption tends to be lower.
Less energy consumption implies an efficient mapping of
requests with the resources. The analysis of overall energy
consumption while adjusting the exploration parameter is
given in Table 4. The agent achieves an effective energy

10



Fig. 7. Energy consumption analysis of the proposed approach for
different episodes and its comparison with the other approaches

consumption when exploration parameter reaches 150. Af-
ter this much explorations, the overall energy consumption
does not experience any significant decrement because ex-
ploration count 150 onwards there is no substantial change
observed in the policy. Fig. 7 demonstrates the compari-
son of the proposed approach with the three mentioned ap-
proaches as before. FCFS results in a constant energy con-
sumption irrespective of its explorations from 50 to 10000
as it simply schedules the requests as soon as they come to
the available resources. The energy consumption does not
get affected no matter how many times we explore in case
of FCFS because with the different simulation episodes
there will be no change in the policy, that is why the graph
shows a linear plot with respect to increasing number of
episodes. The conventional QLR does not use energy con-
sumption as a parameter for policy improvement, so, the
energy consumption fluctuates while exploring the policy.
For example, it shows low consumption at 150 and high
at 250. On the other hand, QLRE shows the result of
the policy where the energy consumption is used as a pa-
rameter for policy update. Hence, it consumes less energy
than QLR. Remarkably, DA-DRLS quickly estimates the
optimal policy through gradient, thus obtains the approx-
imate optimum request-resource mapping which in turn
comes out as the lowest energy consumption. While ex-
ploring, there is a rapid decay till 150 and it approaches a
continuous decay till 200 as it learns to find better policies.

6.4. Response Time

The average response time is observed for different tra-
jectories, and policies are updated according to its value.
The gradient exploits the reward to update the policy for
reducing the response time. The response time decreases
as the policy approaches towards an optimal solution while
passing through different episodes. Similar to energy con-
sumption, after a sharp decrement till 150 explorations,
the response time reaches to its near optimal reading as
shown in Fig. 8. Here, a noteworthy observation is that as

Table 5: Analysis of response time (sec) while increasing the
number of episodes for optimization

Simulation
Episodes

No.of Ex-
plorations

DA-DRLS QLR QLRE FCFS

1 50 5.25 5.1 5.55 6.5
2 100 3.85 4.5 4.98 6.5
3 150 2.19 3.05 3.9 6.5
4 200 2.18 2.9 3.85 6.5
5 250 2.1 2.88 3.78 6.5
6 300 2.08 2.7 3.79 6.5
7 400 2.05 2.55 3.4 6.5
8 500 1.96 2.56 3.35 6.5
9 2000 1.97 2.56 3.1 6.5
10 10000 1.96 2.4 3.15 6.5

Fig. 8. Response time analysis of the proposed approach for
different episodes and its comparison with other approaches

we got almost the best reward after 150 explorations, con-
sequently, we have achieved near to ideal results for both
the energy consumption and response time. As expected,
in response time analysis also, DA-DRLS outstrips all the
three approaches. The highest steady response time of
0.12 is observed for FCFS while QLR requires slightly less
response time than QLRE as mentioned in Table 5.

In Fig. 9a and 9b, we have analyzed the amount of
percentage gain by DA-DRLS with respect to different
simulation episodes as compared to different approaches.
The results reveal that DA-DRLS attains sufficient gains
in context of both the monitoring metrics.

6.5. Resource Utilization

Resource Utilization (RU) is also an important perfor-
mance metric which further ensures low load average in
the system. Here, we formulate the RU factor and pro-
vide analysis in comparison with other above mentioned
approaches. Suppose, there are total L number of service
requests, denoted as {SR1, SR2, ..., SRL} after T time pe-
riod that demand n different types of resources as a request
set, SRl = {r1, r2, ..., rn}, where, l = 1, ..., L. If each re-
source has J number of instances and resource capacity of
each instance is denoted by rcij , where, i = 1, ..., n, then
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(a) Percentage gain for energy
consumption

(b) Percentage gain for response time

Fig. 9. Percentage gain of the proposed approach as compared to
other approaches for both monitoring metrics

Fig. 10. Resource utilization analysis for different arrival rates

the total amount of resource (RC) the system has, can be
calculated as:

RC =

n∑
i=1

J∑
j=1

rcij (15)

Thus, the resource utilization can be further calculated
as:

RU =
1

L

n∑
i=1

(∑L
l=1 ril × tagil∑J

j=1 rcij

)
(16)

where, ril is the requested amount of ith resource type and
tagil is a binary valued variable that indicates whether any
ith type resource is allocated to the ri resource demand by
SRl request. If this statement is true, then, tagil = 1,
otherwise, tagil = 0.

Fig. 10 plots the average resource utilization of four
approaches with respect to different arrival rates. For
each arrival rate, we have estimated the utilization for 100
seconds (T) time span which is increasing for all the ap-
proaches with the increasing arrival rates. At the starting
point, i.e. arrival rate up to 0.3, all the four approaches
exhibit almost same utilization because there is a compar-
atively small amount of resource demand that the system
can satisfy easily. In contrast, as time progresses, because
of the straightforward allocation policy, the least number

Fig. 11. Resource utilization percentage gain for different arrival
rates

of requests of FCFS can be attained by the system. Thus,
FCFS shows the least utilization throughout the different
ranges of arrival rates. QLR and QLRE utilize almost
same average resource, however, it should be noticed that
utilization is slightly smaller in case of QLR. This hap-
pens because QLRE needs a little higher time to allocate
proper resources for its requests. Above all, our approach,
DA-DLRS has the highest utilization for each arrival rate
because of its quick and efficient allocation policy. Fig. 11
shows the percentage gain of DA-DRLS in resource uti-
lization with respect to other approaches.

6.6. Convergence

This analysis is done to show the convergence of re-
sponse time and energy consumption with drift in the final
solution as there is a sudden change in demand. The re-
sultant drift detection is shown in Fig. 12a. In a dynamic
environment like IoT ecosystem, there can be certain cases
which can cause drift. For example, if there is an imme-
diate change in the demand that more service requests
arrive or some resources are added to the resource pool
which was previously not available. This affects or changes
the result of the final solution. It is important to handle
these changes because naively, it requires a complete re-
optimization of the entire solution. Therefore, if the algo-
rithm adapts itself according to these types of drifts then
this re-optimization effort can be reduced.

To emulate this scenario, we have induced the demand
drift after the 150th exploration, Fig. 12 shows the energy
consumption and response time optimization analysis with
respect to drift. Now, if a drift in the service request arrival
pattern occurs, then the learned network got stale and
the learning process needs to be initiated again. The new
convergence of the reward requires a complete rerun of the
entire process of policy generation. Several policy updates
are required to achieve the final trajectory for the new
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(a) Change detection in service arrival
rate in two subsequent windows using
KL-Divergence given in Equation 14

(b) Energy consumption updating process
for the allocation of resources without
drift adaptive learning

(c) Energy consumption updating process
for the allocation of resources while
considering drift adaptive learning

(d) Response time updating process for
the allocation of resources without
considering drift adaptive learning

(e) Response time updating process for
the allocation of resources while
considering drift adaptive learning

Fig. 12. Energy consumption and response time convergence analysis when there is a demand drift in service arrival pattern

set goal after drift. As shown in Fig. 12b, the energy
consumption shows re-optimization form 151th to 230th

exploration, and in Fig. 12d, response time from 151th

to 250th. The proposed approach after using Algorithm
2 for adaptive learning, obtains an early convergence for
both the metrics as less number of episodes are required to
achieve less energy consumption and response time. From
Fig. 12c, and 12e, we can observe that energy consumption
achieves convergence between 151th to 162th and response
time reaches to its convergence after 176th.

6.7. Trade-off

The whole approach will be changed a bit if the objec-
tive function requires a trade-off between the monitoring
parameters. The proposed approach is also tested for such
trade-off situations. For the analysis of trade-off between
response time and energy consumption, we have used a
threshold parameter η. To achieve a trade-off reward using
η, we have used the following Equation 17. The equation
is similar to the Equation 7 except the difference that here
a weight is provided to both the response time and the
energy consumption.

r(s, a) = η
1

RT (s, a)
+ (1− η)

1

log(EC(s, a))
(17)

A high value of η gives more weight to response time
and less to the energy consumption and vice-versa. For the

Fig. 13. Response time analysis providing different weights to
response time parameter

analysis, we have used different values of η as η = 0.3, 0.5,
and 0.7 to develop a policy which minimizes the energy
consumption and response time while providing different
levels of importance to the response time and energy con-
sumption parameter. Thus, a policy can be obtained that
will result in a trade-off between the monitoring metrics
while the value of the threshold trade-off parameter is an
important factor to get such policies. Fig. 13 and Fig. 14
depict the results for response time and energy consump-
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Fig. 14. Energy analysis with different weights to the energy
parameter

Fig. 15. Execution time analysis of the proposed DA-DRLS with
FCFS, QLR, and QLRE approach

tion trade-off as the iteration of the episodes increases.
The number of episodes iteration used in the analysis is
same as in the previous analysis.

� Case 1: Interestingly, we can notice that when η =
0.3, the amount of reduction in the response time is
less due to its less consideration in the reward max-
imization function given in Equation 17. Notwith-
standing, energy consumption achieves the maximum
reduction as its contribution weight is 0.7 in the re-
sultant reward function.

� Case 2: When η = 0.5, both the two parameters
gain average values as they contribute equal weights
to the reward function.

� Case 3: For η = 0.7, the situation is just a reverse
from Case 1.

7. Discussion

Our intended approach DA-DRLS, a probabilistic model
of decision making, is elementarily a mixture of DNN and

RL. Unlike supervised and unsupervised learning, DA-
DRLS is appropriate for the agent-based modeling usu-
ally when the agents have the ability to attain a certain
maximization of the objective function through interac-
tions with the subject environment. In this section, we
have enumerated the most significant observations of our
research:

� It has been empirically observed that adding more
number of neurons and hidden layers, does not sub-
stantially improve the energy consumption and re-
sponse time for the considered scenario. On contrary,
increase in the number of hidden layers and neurons,
in turn, raises the overall complexity. Therefore, we
have used one hidden layer for our analysis.

� If any unanticipated phenomenon occurs, the sched-
uler of DA-DRLS learns a fresh optimal policy using
KL-divergence considering the recent circumstance
and converges to a new maxima. Thus, it is well
adaptive to the dynamically changing environment
like IoT ecosystem.

� DA-DRLS deals satisfactorily with energy consump-
tion and response time issues while allocating the in-
coming requests to the resources, ensuring a fair uti-
lization. Despite this, one important research ques-
tion that might be appeared here is that, DA-DRLS
does not consider the priority levels of different in-
coming traffic. As different applications of IoT have
different levels of urgency, therefore, priority can vary
from application to application. In our approach, we
have tried to contribute a generalized method to ef-
ficiently handle IoT application requests while allo-
cating adequate resources.

� We have also attempted to present an analysis main-
taining a trade-off between two important monitor-
ing metrics: energy consumption and response time
using a new parameter. However, deciding a trade-
off is crucial depending upon different QoS require-
ments of diverse IoT applications, and it is the re-
sponsibility of the service providers to establish a
trade-off between several QoS metrics.

� The conventional RL algorithms try to find the ex-
act solution by exploring all the possible trajectories.
On the other hand, the gradient based reinforcement
learning combined with a DNN tries to approximate
the solution which reduces the amount of computa-
tion. Fig. 15 demonstrates the execution time re-
quired for the proposed DA-DRLS with respect to
other approaches. It is evident that DA-DRLS re-
quires less execution time as compared to QLR and
QLRE. However, in case of FCFS, there is no deci-
sion making computation required, so it has a con-
siderably less execution time. On the other hand,
it underperforms in context of energy consumption,
response time, and resource utilization.
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8. Conclusion and Future direction

IoT resources can be managed using a policy for alloca-
tion to the incoming user requests. This paper provides an
efficient modeling of the IoT ecosystem where service re-
quests arrive with heterogeneous resource demands. The
proposed policy generation model fits well and provides
an efficient request-resource mapping in an IoT ecosystem.
It uses a combination of deep learning and reinforcement
learning in order to explore the environment for differ-
ent resource allocation possibilities and select the optimal
solution for resource allocation. The simulation analysis
shows that our proposed approach provides a significant
amount of improvement in context of monitoring metrics
as compared to FCFS, QLR, and QLRE. It has been ob-
served that the proposed approach achieves the desired
solution after several explorations and effectively penalize
less prominent solutions using the proposed reward func-
tion. An extensive set of simulation results has revealed
that:

� DA-DRLS is a robust mechanism that shows better
results under heavy traffic flow situation also.

� It utilizes the system resources properly that ensures
a balanced load in the system as well.

� The adaptability analysis shows that the approach is
efficacious enough in case of changing environment.
Overall, the paper provides a compelling solution to
the resource allocation problem in IoT ecosystem
while ensuring dynamic user requests and drifting
environment.

� The proposed approach effectively provides trade-
off between monitoring metrics: energy consumption
and response time using different values of trade-off
parameter.

As a future work, a priority based approach between
same IoT applications and different IoT applications will
be investigated using real experiment set up.
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