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Mobile crowdsensing serves as a critical building block for the emerging Internet of Things (IoT) applica-
tions. However, the sensing devices continuously generate a large amount of data, which consumes much
resources (e.g., bandwidth, energy and storage), and may sacrifice the quality-of-service (QoS) of applica-
tions. Prior work has demonstrated that there is significant redundancy in the content of the sensed data.
By judiciously reducing the redundant data, the data size and the load can be significantly reduced, thereby
reducing resource cost, facilitating the timely delivery of unique, probably critical information and enhanc-
ing QoS. This paper presents a survey of existing works for the mobile crowdsensing strategies with em-
phasis on reducing the resource cost and achieving high QoS. We start by introducing the motivation for
this survey, and present the necessary background of crowdsensing and IoT. We then present various mobile
crowdsensing strategies and discuss their strengths and limitations. Finally, we discuss the future research
directions of mobile crowdsensing for IoT. The survey addresses a broad range of techniques, methods, mod-
els, systems, and applications related to mobile crowdsensing and IoT. Our goal is not only to analyze and
compare the strategies proposed in the prior works but also to discuss their applicability towards the IoT,
and provide the guidance on the future research direction of mobile crowdsensing.
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1. INTRODUCTION
In recent years, an increasing number of sensing devices and wireless networks
emerge in our living environments, creating the Internet of Things (IoT) integrating
the cyber and physical objects [Zordan et al. 2014; Shen et al. 2015b; Zhu and Shasha
2002; Zhang et al. 2013; Tangwongsan et al. 2010; Willett et al. 2013; Hasan and Curry
2014; Kirak et al. 2013; Kumbhare et al. 2013; Lane et al. 2013; Li et al. 2014]. As
exposed in [Atzori et al. 2010], IoT will have a high impact on potential users’ behav-
ior because it integrates five layer middleware architecture (i.e., applications, service
composition, service management, object abstraction, and objects) and identification,
sensing and communication technologies. Figure 1 shows the architecture of IoT (right)
and the architecture of its five layer middleware (left). According to the Top 10 predic-
tions of 2014 from the Gartner, IoT will be the fast-growing, largest market potential
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Fig. 1: Architecture of the In-
ternet of Things (IoT) (right)
and its five layer middleware
(left).

VM1 VM2 VM3 

VM1 

VM2 

VM1 padding 
VM2 padding 

VM1 VM2 VM3 

VM1 

VM2 

VM3 

Common padding 
Insufficient resource to hold VM3 

(a) (b) 

Job 1 
Job 2 

VM2 1 <15, 1, 20> 

Job 1 <10, 1, 10> Job 2 <10, 1.6, 20> Job 4 <1, 0.5, 5> Job 5 <8, 0.5, 15> Job 3 <15, 1.5, 12> Job 6 <15, 0.5, 5> 

CPU Mem Storage CPU Mem Storage 
0 0 

VM1  

VM2  

VM1  

VM2  

Job 1  

Job 2  

Job 1  

Job 2  

CPU  

S
to

ra
g

e
 

CPU  

S
to

ra
g

e
 

Applications 

Service 
Composition 

Service 
Management 

Object 
Abstraction 

Objects 

Service 
Management 

Object 
Abstraction 

Objects 

Applications Application Layer 

Middleware Layer 

Internet Layer 

Access Gate Layer 

Edge Technology Layer 

and the most attractive emerging economy, thereby becoming the focus of attention in
the field of networking.1

Mobile crowdsensing (MCS) refers to the wide variety of sensing models in which
the individuals collectively share data and extract information to measure and map
phenomena of common interest [Ganti et al. 2011; Peng et al. 2015]. MCS is emerg-
ing as a distributed paradigm, and it lies at the intersection between the IoT and
the volunteer/crowd-based scheme. MCS creates a new way of perceiving the world to
greatly extend the service of IoT and explore a new generation of intelligent networks,
interconnecting things-things, things-people and people-people. Usually, the MCS ap-
plications are deployed on contributing nodes, such as mobile, personal devices that
can be used to sense the physical environment and provide sensor data to mobile ap-
plication server. Recently, various kinds of applications have been developed to realize
the potential of MCS throughout daily life, such as environmental quality monitoring2,
noise pollution assessment [Maisonneuve et al. 2009; Rana et al. 2010], and traffic
monitoring [Zhang et al. 2014].

MCS requires a large number of participants (individuals) to sense the surrounding
environment using the sensing devices with built-in sensors. It is well-known that in
such a large-scale system, the sensing devices continuously generate a huge amounts
of data (raw sensor data), which consumes much resource (e.g., bandwidth, energy,
etc.) [Liu et al. 2015]. However, the sensing devices have limited resources. Due to the
limited resource, the quality of the data collected can be even sacrificed in the scenario
of bandwidth constrained networks because of the heavy traffic load and high power
consumptions [Hua et al. 2015; Dao et al. 2014]. Therefore, the resource limitation
imposes a key challenge [Xu et al. 2015a; Dao et al. 2014; Hua et al. 2015; Gorlatova
et al. 2014]. For example, images collected in the disaster area take an important role
in disaster relief, the images collected may not be able to be uploaded in time due
to the limited bandwidth, which can incur a huge cost. Therefore, resource limitation
always hinders the necessary participation and wide-scale adaptation of the targeting
applications [Xu et al. 2015a].

Although MCS is a new emerging paradigm, it has been applied in real applica-
tions [Chon et al. 2012; Mohan et al. 2008]. The application of MCS attracts great
attention from both academic and business communities, which started investigating
the commercial exploitation of MCS [Ra et al. 2012]. However, the adoption of MCS
approach in business context requires the guarantee of the quality-of-service (QoS).
Hence, QoS is one of the most important arising issues. Therefore, QoS-driven policies
are needed to deal with the application non-functional issues to guarantee QoS.

1http://www.gartner.com.
2Creek watch: http://creekwatch.researchlabs.ibm.com/, 2010; Opensense: http://www.opensense.ethz.ch/tr
ac/, 2010.
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In this paper, we review the MCS techniques and challenges. Different aspects of
the MCS are also reviewed by the researchers. In [Ganti et al. 2011], Ganti et al.
introduced MCS, briefly overviewed of existing MCS applications with their unique
characteristics, and discussed several research challenges with possible solutions.
In [Vergara-Laurens et al. 2016], Vergara-Laurens et al. surveyed privacy issues and
privacy-preserving mechanisms for crowdsensing systems. Zhang et al. reviewed the
literature for the incentives that encourage users to participate in MCS applications
under entertainment, service, and money categories [Zhang et al. 2016]. In [Wang et al.
2016], Wang et al. introduced sparse MCS, discussed sparse MCS challenges and de-
veloped a framework with potential solutions to the challenges. In [Wazir Zada Khan
et al. 2013], Khan et al. comprehensively explained mobile sensing systems according
to personal, social and public sensings. On the other hand, our focus is to discuss the
resource limitation and QoS (e.g., data quality) issues and solutions in MCS. Appar-
ently, a better understanding of resource management and QoS estimation in MCS can
help us design a cost-effective crowdsensing system that can reduce the cost by fully
utilizing the resource and improve the QoS for users, which manifests the significance
of our survey.

Our objectives in reviewing the literature are threefold: 1) to learn what are the
problems existing in MCS and how the proposed techniques have helped to develop
solutions in the past; 2) to learn the strengths and limitations of different MCS tech-
niques for smartly managing the resource to achieve low cost and good QoS, and how
can we use those techniques to better solve similar problems in the future in different
paradigms such as the IoT; 3) to provide guidance on the future research directions of
MCS for IoT.

The remainder of this paper is organized as follows. Section 2 introduces the con-
cepts of IoT and MCS. Section 3 describes the strategies of MCS. Section 4 describes
the crowdsensing strategies for different application domains. Section 5 describes the
challenges of MCS and the future research directions. Section 7 concludes this paper
with remarks on our future work.

2. BACKGROUND
In this section, we introduce the main concepts of the IoT and MCS.
2.1. Internet of Things
During the past 10 years, the IoT has drawn great attention in both academia and
business communities. The potential capabilities of IoT [Carnot Institutes 2011; At-
zori et al. 2010] bring the interest of both academia and business communities. IoT is
expected to create a world where all the objects around us are connected to the Inter-
net, and eventually, it aims at creating ‘a better world for human beings’ [Dohr et al.
2010].

The term ‘Internet of Things’ was firstly coined by Kevin Ashton [Ashton 2009] in
1998. Later, the International Telecommunication Union (ITU) formally introduced
the concept of IoT in 2005 [International Telecommunication Union 2005]. Currently,
there is no standard definition for IoT. We use the definition of IoT from [Guillemin
and Friess 2009] because it characterizes the broader version of IoT.
• Definition by the work [Guillemin and Friess 2009]: “The Internet of Things allows

people and things to be connected Anytime, Anyplace, with Anything and Anyone,
ideally using Any path/network and Any service.”

IoT is a new emerging paradigm, and it is a very broad version. The research into
the IoT is still on the way. The potentialities of the IoT enable the development of
a large number of applications in many domains. The application domains can be
primarily divided into four categories [Atzori et al. 2010]: transportation and logistics
domain, healthcare domain, smart environment (e.g., home, plant) domain, personal
and social domain.
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Fig. 2: Architecture of MCS
system. Raw sensor data is
collected via different mobile
sensing devices (GPS, etc.) in
sensing layer. In order to pre-
serve privacy, the data will be
sent to data collection layer
and will be modified by us-
ing methods such as data
anonymization.
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2.2. Mobile Crowdsensing
Mobile Crowdsensing (MCS) uses the sensing devices equipped with sensors, to collect
data (raw sensor data) from the surrounding environment. Therefore, the objectives of
any MCS platform are to operate in a harmony with participants and individuals (e.g.
load balancing), assign the tasks to the reliable participants (the participants which
are expected to complete the assigned sensing tasks), effectively gather the required
data from the participants, process and manage the data according to the purpose,
and dynamically improve itself for next crowdsending events by self-learning mecha-
nism [Bellavista et al. 2015]. MCS usually requires a large quantity of participants to
sense the environment using the sensing devices. Based on the involvement of partic-
ipants in sensing actions, MCS can be categorized as: participatory and opportunis-
tic [Jami et al. 2015]. MCS has many applications. Based on the type of phenomenon
being measured or mapped, the MCS applications can be divided into three categories:
(a) Environmental application, (b) Infrastructure, and (c) Social application [Ganti
et al. 2011]. Figure 2 shows the architecture of MCS system with five layers: sens-
ing, data transmission, data collection, data processing, and application. In Figure 2,
a certain number of challenges in MCS are indicated.

The basic MCS procedure includes three steps: data collection, data storage and data
upload. Data collection is the first phase of MCS. The strategies for data collection usu-
ally can be divided into three categories [Lane et al. 2013]:
• All the data is manually collected by the user when controlling the sensing devices,
such as smartphones with a specific application. This approach is attention-consuming
and inefficient.
• Data collection is partially controlled by the user and by sampling, which is per-
formed periodically. Sometimes, the data can be collected opportunistically, i.e., when
the user opens some applications.
• Context-aware data sensing is triggered by predefined contexts, such as a particular
location or time slot. This method releases the user from focusing on the crowdsensing
tasks and makes it practical.

Based on the work [Pietschmann et al. 2008], context-aware data sensing can be al-
most accomplished by using the following two methods: push and pull. The definitions
of push and pull are in below.
• Push: The physical or virtual sensing device (e.g., sensor) sends the data to the soft-
ware component that is used to acquire data (e.g., sensor data) periodically or instantly.
Periodical or instant pushing are able to help facilitate a publish and subscribe model.
• Pull: The software component which is in charge of acquiring data (e.g., sensor data)
from sensing devices (e.g., sensors) makes a request like a query from the hardware of
the sensing devices periodically or instantly to acquire data.
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Degree of human participation Example
Completely controlled by user Application monitoring the water levels, e.g., creek watch

Partially participation Mobile energy efficient crowdsourcing, e.g., piggyback
crowdsensing (PCS)

Control-free Mobility information collection for pattern analysis on
smartphone platform

Platform mobility
Stationary Roadside unit for traffic information collection

Mobile Vehicular localization and vibration sensors, e.g., GPS,
accelerometers

Platform context

Social network Location-based restaurant recommendation system, e.g.,
foursquare, whirl, etc.

Natural environment Real-time forest soil temperature and moisture monitoring
Traffic management Traffic congestion monitoring

Table I: Summary of mobile crowdsensing applications.

Deduplication. Deduplication is a method for eliminating redundant data in the data
collection phase to reduce resource cost and improve application QoS. Data dedupli-
cation is an essential part for reducing the cost of MCS implementation. As in most
computation scenarios, data deduplication in crowdsensing performs filtering and com-
pressing on the raw data (e.g., images) collected by sensing devices. The deduplication
is conducted with the constraint that the significance of the data being kept. Dedupli-
cation of crowdsensing data makes full use of the limited sensor storage and reduces
the bandwidth consumption caused by data transfer. In deduplication, data is usually
partitioned into chunks, and unique chunks of data are identified and stored. Other
chunks are compared to the stored chunks, and the redundant chunks are replaced
with a small reference that points to the stored chunk. Only the unique chunks and
the references are stored and uploaded. Thus the size of the uploaded data is reduced
and the bandwidth consumption will be reduced.

As the size of the data to be processed increases rapidly, the deduplication technology
is improving rapidly to meet the requirement of the industry and research all over
the world. From the perspective of the phase at which the deduplication occurs, the
data deduplication approaches can be categorized as real-time deduplication and post-
process deduplication. On the other hand, as for the layer where the deduplication
happens, there are local and server deduplication.

Real-time deduplication refers to hashing and compressing the data when acquiring
the data. Duplicated data acquired by the sensing device will be detected based on the
stored data chunk. If the new data is judged as duplicated, it will not be stored in the
sensing device, neither be uploaded to the data center. The advantage of this strategy
is to lower the required storage of local sensing devices. However, it shifts the com-
putation burden from the data center to the terminals. For some commodity sensing
devices like smart wearable gadgets, the real-time computation capacity is limited, so
this strategy may not be practical. Hence, the post-process strategy can be adopted
to relieve the real-time computation burden of local sensing devices. Specifically, the
data acquired is stored first and then be processed for deduplication. The trade-off of
this method is the relative high storage requirement and the storage overwriting risk
when the storage margin is small.

Based on the criteria proposed in the work [Dimov 2014] and taking into account the
stability degree of the crowdsensing platform mobility and context, we can categorize
the crowdsensing applications in Table I.

Although crowdsensing has advantages of low cost, high flexibility and large data,
the privacy of user requires to be protected when the crowdsensing process involves
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the human participation tightly, especially in the social network application. The users
who contribute to the data collection are vulnerable to intended privacy attack [Kro-
ntiris and Dimitriou 2013]. Generally, the protection can be arranged at user end or
performed by the cloud agent. Specifically, common strategies that help the users avoid
privacy leakage are data anonymization, encryption and degradation.

3. EXISTING MOBILE CROWDSENSING STRATEGIES
In this section, we describe different MCS strategies aiming to reduce the resource
consumption in order to reduce the resource cost and improve QoS.

Previous works demonstrate that significant redundancy exists in the content of the
data [Dao et al. 2014; Aggarwal et al. 2011]. In many cases, sensors are likely to collect
similar kinds of data from related sensors [Aggarwal et al. 2011]. Thus, it is important
and necessary to eliminate the redundant data, which on the one hand can reduce the
resource consumption and thus reduce the cost (e.g., bandwidth cost, energy cost, etc.),
and on the other hand can improve the QoS of timely information delivery by reducing
the traffic load. One of the key challenges here however, is detecting ‘what data is sim-
ilar’. Another key challenge is how to eliminate the similar data while ensuring high
QoS (e.g., without compromising the quality of the data, timely delivery of valuable
data). To handle the problem caused by limited available resources, many methods
have been proposed. Below, we present a review of previously proposed strategies.

3.1. Different Mobile Crowdsensing Strategies for Reducing Resource Cost
Aggarwal et al. [Aggarwal et al. 2011] discussed real-time algorithms for reducing
the volume of the data collected in sensor networks by determining the functional
dependencies between sensor streams efficiently in real time, and actively collecting
the data only from a minimal set of sensors. Hua et al. [Hua et al. 2015] presented a
near-real-time and cost-effective solution under cloud assisted disaster environment.
SmartEye [Hua et al. 2015] leverages two main methods, semantic hashing and space-
efficient filters to aggregate the flows with similar features and provide communication
services for the aggregated flow.

In bandwidth constrained network, Dao et al. [Dao et al. 2014] introduced a method
focusing on recognizing the similar contents in images and videos, by leveraging the
metadata uploaded first to distinguish the similarity of the data. According to their ex-
perimental results on a testbed and the simulation results using NS3, the rate of suc-
cessful similarity detection is up to 70%. A number of researchers also dealt with the
data redundancy reduction by detecting the similarity among the data, such as images
or videos. For example, Weinsberg et al. [Weinsberg et al. 2012] proposed a framework
called CARE, which eliminates the redundancy of the image for transferring data with
constrained bandwidth while maintaining the quality of the service. In comparison
with the former method in [Dao et al. 2014], CARE assumes that the infrastructure is
unavailable, which is reasonable when the disaster happens, and makes use of peer-to-
peer strategy to eliminate redundant data. In mobile platform real-time crowdsensing,
Wanita et al. [Sherchan et al. 2012] designed a system for collecting data via instan-
taneously data analysis and process. To reduce bandwidth consumption and save the
energy for mobile devices, their CAROMM is able to acquire various stream data by
mobile devices and process them based on context attached, e.g., the location and time
mark on photos, finally contributing to the relevant data retrieval from the dataset.

Riteau et al. [Roemer et al. 2014] adopted a data deduplication strategy to reduce
the storage and bandwidth consumption for the applications which require a great
deal of data to be kept and conveyed. Based on WANs, a distributed data deduplication
method and a message-delivery model were provided. However, the semantics of the
content was not considered to further improve the performance of the approach.
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To address the high energy consumption problems involved in smartphone based
crowdsensing applications, Nicholas et al. [Lane et al. 2013] proposed an energy ef-
fective crowdsensing strategy by taking advantage of opportunistic application run by
the users. The solution is called Piggyback CrowdSensing (PCS), and it depends on a
predictive model to find the optimal time slot to perform the sensing task. Prediction is
an effective way to avoid meaningless cost and lower the overhead, e.g., taking into ac-
count location information. The data (i.e., images) from exactly the same location tend
to contain the same information. Besides, their analysis on the application specifics
can also contribute to the overall cost-reduction. Gorlatova et al. [Gorlatova et al. 2014]
presented solutions on estimating harvested energy from acceleration records. In or-
der to characterize the energy availability related to particular human behaviors, the
work [Gorlatova et al. 2014] analyzes a motion dataset with over 40 participants, and
an energy allocation algorithm with accessible IoT node solution designing has been
developed and evaluated based on the collected measurements.

3.2. Different Crowdsensing Strategies for Achieving Good QoS
Below, we introduce a list of methods for achieving good QoS in MCS.

Xu et al. [Xu et al. 2015b] proposed Compressive CrowdSensing (CCS) which is a
framework for applying compressive sensing techniques to mobile crowdsourcing sce-
narios. CCS enables compressive sensing techniques to be applied to MCS by providing
significantly reduced amounts of manually collected data and maintaining acceptable
levels of overall accuracy at the same time.

Yan et al. [Yan et al. 2010] proposed CrowdSearch for searching images using mo-
bile phones. CrowdSearch integrates the strategy of automated image search into the
real-time validation of human. They combined local processing on mobile phones and
backend processing on remote servers to implement the process of image search. By
balancing accuracy and monetary cost, CrowdSearch finds a trade-off between accu-
racy and monetary cost and ensures user-specified deadlines for responses to search
queries simultaneously. To improve the quality of images, CrowdSearch presents a new
prediction algorithm to determine the results needed to be validated, and determine
when and how to validate these results.

Due to the limited resource, it is a challenge to transfer a huge amount of crowd-
sensed data. To address this challenge, Wang et al. [Wang et al. 2014] proposed a
framework called SmartPhoto, to quantify the quality (utility) of crowdsensed pho-
tos based on the accessible geographical and geometrical information (referred to as
metadata), which contains the information of the device’s orientation, location and all
related parameters of the built-in camera. With the metadata, it can be inferred where
and how the photo is taken. Also, SmartPhoto only transmits the most useful photos.
They also studied three optimization problems on the trade-offs between photo utility
and resource constraints. Moreover, they designed efficient algorithms with theoreti-
cal proofs of the performance of the algorithms. Finally, by using Android based mobile
phones, they implemented SmartPhoto in a testbed with techniques designed to im-
prove the accuracy of the collected metadata by reducing sensor reading errors.

Xu et al. [Xu et al. 2015a] studied compressive sensing under the scenarios in which
different samples have different costs. This work tries to balance the minimization of
the total sample cost and the recovery accuracy, and designs Cost-aware Compressive
Sensing (CACS) for incorporating the samples’ diversity on cost into the compressive
sensing framework. The CACS has been applied to networked sensing systems.

To maximize the aggregate data utility, Li et al. [Li et al. 2015] studied how to the
aggregate data utility under the constraint on budget in MCS. They presented a combi-
natorial auction mechanism that utilizes a redundancy-aware reverse auction frame-
work. The auction mechanism is mainly composed of two parts: an approximation al-
gorithm used for winning bids determination and a critical payment scheme.
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Table II lists different techniques in MCS with an emphasis on redundancy reduc-
tion. Table III gives a comparison among common strategies of MCS in recent years
and an example work of each strategy. We cite the most representative case for each
strategy. As we can see from the table, most of the data sensed by the mobile device is
images which contains rich information and consumes a small amount of storage due
to data deduplication.
3.3. Dataset
In the above, we discuss different techniques for handling the resource limitation issue
to achieve low cost while achieving good QoS. Below, we provide some datasets for
research in MCS.

There are several typical datasets available for crowdsensing research. The dataset
contributed by von Ahn et al. [von Ahn and Dabbish 2004] consists of 100,000 images
with English labels which are from their ESP Game3. TagATune4 is a research dataset
for human computation game, and it was published by Law et al. [Law and von Ahn
2009]. TagATune contains human annotations. Another dataset is the ESP Lite game
developed by Chen et al. [Yuen et al. 2009; Huang et al. 2010]. The ESP Lite game is
similar to the ESP game introduced by von Ahn et al. [von Ahn and Dabbish 2004].
The statistics for players playing the game is available now.5 CiteULike6 developed
by Oversity Ltd is a free website, which allows users to save and share citations to
academic papers and is used to help academics record of the articles they are reading
on. CiteULike encourages users to share their libraries on the website so that others
can benefit from the resource sharing for discovering articles that are useful to them.
To better facilitate research, Körner and Strohmaier [Körner and Strohmaier 2010]
released a list of social tagging datasets.7

4. CROWDSENSING STRATEGIES FOR DIFFERENT APPLICATION DOMAINS
Apart from the above strategies focusing on the data processing phase, we can divide
the categories of these strategies based on their application domains [Guo et al. 2015].
Accordingly, common domains of the crowdsensing are as follows.

4.1. Natural Environment Monitoring
The main purpose of the crowdsensing strategies for natural environment monitoring
is to keep track of the status of the natural environment in order to prevent avoidable
disaster and human pollution. For example, tracking the real-time temperature in a
particular area of a forest can monitor the sign of the fire and signal the warning to
prevent from the disaster.

As for environment protection oriented crowdsensing strategies, academy and in-
dustry currently both are likely to take advantage of a vast number of smart devices
owned by the public to do the research or make a profit at a relative low investment.
Shilton et al. [Mun et al. 2009] made use of participatory sensing strategy to measure
the impacts of climate changes and pollution sources. Participatory, a process of col-
lecting and analyzing data, leverages the individuals’ smart devices, conveys data by
wireless network and process the data in the data center. Two features of the strategy
are context-triggered feedback and data visualization, which make the software inter-
act with smart device owner effectively to perform the specific task. For example, when

3ESP Game dataset: http://server251.theory.cs.cmu.edu/ESPGame100k.tar.gz.
4Tagatune Dataset: http://tagatune.org/Magnatagatune.html.
5The website of IIS-NRL Games With A Purpose - ESP Lite. http://hcomp.iis.sinica.edu.tw/dataset/dataset
esplite20100101.php.
6CiteULike website: http://www.citeulike.org and the dataset website: http://svn.citeulike.org/svn/plugins/
HOWTO.txt.
7A List of Social Tagging Datasets Made Available for Research: http://kmi.tugraz.at/staff/markus/datasets/.
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Reference Sensing Task Technology Collected Data

Hua et al. [Hua et al. 2015] Real-time image sharing
in disaster situation

QoS-sensible redundancy
reduction in the software-
defined networks

Image

Dao et al. [Dao et al. 2014] Image/video uploading
in disaster environment

Comparing the metadata
of images to eliminate
the redundancy

Image

Xu et al. [Xu et al. 2015b] Data compression
aided crowdsensing

Indirectly reducing
the signal dimension

Responses to
questionnaire

Gorlatova et al.
[Gorlatova et al. 2014]

Kinetic energy sensing
and analyzing

Energy allocation algorithm
based on accelerometer
acquisition

Kinetic energy

Yan et al. [Yan et al. 2010]
Smartphone based
crowdsensing
management

Participation pattern
recognition, incentive mod-
eling and cost reduction

Mobile sensing data

Aggarwal et al.
[Aggarwal et al. 2011] Sensor stream selection

Real-time data redundancy-
reduction algorithm for
data collection

Intel-humidity and
intel-temperature

Willett et al.
[Willett et al. 2013]

Redundancy recognition
and provenance
detection

Copying and
paraphrasing
determination

Crowdsourcing data
like text

Wang et al.
[Wang et al. 2014]

Smartphone based
image crowdsensing

Metadata aided selective
image sharing Image

Xu et al. [Xu et al. 2015a] Cost-sensible
crowdsensing

Optimization algorithm
for balancing the
recovery accuracy
and sample quantity

Air pollution data

Li et al. [Li et al. 2015] City mobility
pattern monitoring

Spatio-temporal analysis
on vehicle traces GPS data

Chon et al.
[Chon et al. 2013]

Place-centered
crowdsensing
coverage and
scalability analysis

Crowdsensing
property modeling

Smartphone
sensing data

Table II: A list of different mobile crowdsensing strategies.

a person arrives at a particular place, the context-aware device will automatically no-
tify the owner to take a photo with the natural target to upload to the cloud for further
analysis. In terms of nature pollution targeted crowdsensing, relevant strategies are
designed on noise and air pollution aspects.

Crowdsensing plays an important role in measuring and reducing the noise pollu-
tion. Nicolas et al. [Maisonneuve et al. 2010] presented a participatory noise pollution
detection method, called NoiseTube, based on a mobile phone platform, aiming to
acquire the first-handed noise data suffered by individuals. NoiseTube records the
magnitude of the noise combined with the position and time information for further
statistical analysis. For similar purpose, Rana et al. [Rana et al. 2010] established
a noise map to enhance the efficiency for monitoring noise in cities. Crowdsensing
techniques were adopted by them to avoid the high cost to build the noise map by
traditionally infrastructure based methods. They implemented the method on Nokia
N95 and HP iPAQ platforms and addressed the problem for ensuring the noise
measurement accuracy. To reduce the computation overhead for mobile phones, the
data analysis is conducted in the data center.

Crowdsensing is also used for air pollution measurement. PEIR, a project for mon-
itoring the human effect on the environment with the aid of crowdsensing research,
is conducted by Mun et al. [Mun et al. 2009]. The sensing system consists of mobile
handset GPS receivers for collecting the position data, server data classification pro-
cessors for detecting different modes of the transportation and a database for looking
up the weather and road condition data. The main contribution of the work lies in two
aspects: an innovative map-matching and pattern recognizing algorithm and a mech-
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anism for protecting the user’s privacy from leakage. Zheng et al. [Zheng et al. 2013]
proposed a holistic method, combining data sources from crowdsensing application,
monitor station and historical air pollution database, to actually report the real-time
air quality all over the city. The core methods involved in their solution are two clas-
sifiers, one is on the basis of artificial neural network (ANN) taking into account the
spatial information of an area; the other is called linear-chain conditional random field
(CRF), considering the real-time dependency among factors, such as temperature, hu-
midity and etc. The paper sheds light on making use of artificial intelligence to solve
the crowdsensing problems, which we believe is a trend in the near future.

4.2. Traffic Information Collection and Management
Crowdsensing strategies play an important role in collecting traffic information, and
Crowdsensing strategies help the public and the government on related decision-
making. Below, we introduce three aspects.

4.2.1. Traffic flow information collection. The real-time road condition crowdsensing and
monitoring has drawn much attention. Calabrese et al. [Calabrese et al. 2011] pro-
posed a real-time road condition monitoring system with the aid of the LocHNESs
platform performing the data collection and uploading task via a cellular network. The
mobility information, position, speed and time of buses, taxis and pedestrians of the
entire Roma city are collected to analyze the instantaneous traffic status in the city.
The system focuses on the unexpected traffic trend comparing with predicted traffic in-
formation to further improve the city traffic management for a higher transportation
efficiency. Specific to resident transport behavior, Liu et al. [Liu et al. 2009] designed
a method to monitor the mobility patterns of citizens and visualize the data to show
the trend of the development of city economy and infrastructure. They used the smart
card including information like date, time, and taxi GPS records containing vehicle
ID, company, longitude and latitude to extract the features to obtain travel distances,
durations and zones. The experiments conducted in Shenzhen city show that the data
analysis result can improve the citizens’ quality of life by improving the traffic man-
agement efficiency.

4.2.2. Transport service improvement. The crowdsensing data also can be used to improve
public transport quality. The application includes the optimization of the bus routes
and schedules and modification of taxis zone allocation. By using the Taxi GPS traces,
Chen et al. [Chen et al. 2014] presented a method to recognize the resident mobility
pattern to contribute to the night-bus route modification. The solution comprises two
phases. In the first phase, the high density spots of pick-up/drop-off are detected and
an optimal bus stop to split the amount of the flow is applied. In the second phase, the
constraints, bus route origin, destination and time, on the allocation of bus station are
taken into account to obtain a global optimal arrangement of the bus stations. From
the individual’s perspective, Zhou et al. [Zhou et al. 2014] proposed an approach to
predict the waiting time for the next bus with the aid of the crowdsensing techniques.
On the basis of the commodity cell phones, the ambient of the bus passengers is de-
tected and used to estimate the arrival time of buses. The highlight of the paper is
that, instead of GPS-only localization method, the authors combined various context
factors, cell tower positioning information, inertial measurements, voice records, etc. to
obtain an energy-efficient and highly robust scheme. As proved by their experiments,
during 7-week period with a variety of Android based cell phones, the crowdsensing
improves the passengers’ experience when they are waiting for the buses. Just like the
information of the weather, real-time road condition is tightly related to the individ-
ual’s daily activities, commuting, traveling, etc. Many researchers and companies (e.g.,
Google Map is able to visualize the traffic condition near the driver for choosing an
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easy path efficiently) are interested in keeping track of up-to-dated traffic conditions,
such as congestion, accident and severe weather. The Pothole Patrol, a crowdsensing
application researched and developed by Eriksson et al. [Eriksson et al. 2008] aims to
test the road surface condition using GPS and vibration sensors equipped on the mov-
ing vehicles. The data collection is triggered opportunistically and road problems like
potholes can be detected by using a fundamental machine learning approach. The ad-
vantages of their approach include low cost, due to accessible on-board positioning and
inertial sensors, and high rate of successful road problem detection, e.g., more than
90% detected road anomalies require to be fixed.
4.3. Urban Dynamics Sensing
The understanding of urban dynamics is critical for urban development and quality
improvement of citizen life. Understanding urban dynamics is a key challenge. Urban
dynamics sensing has become possible and has attracted many interests from both
industry and academic research societies. Human urban mobility/behavior patterns:
Some works study how to reveal human mobility and behavior patterns in urban ar-
eas. Adeel et al. [Adeel et al. 2014] studied how to provide a cost-effective networking
service for real-time and delay tolerant applications in Mobile Urban Sensing System
(MUSS). They proposed a novel networking scheme that supports both real-time and
delay-tolerant urban sensing applications. The core of the scheme is the trading of mo-
bile sensor data in a virtual market where the scheme was demonstrated to be able
to incentivize mobile phone users to participate. Pan et al. [Pan et al. 2013] addressed
the problem of detecting and describing traffic anomalies using crowd sensing with two
forms of data, human mobility and social media. Phithakkitnukoon et al. [Phithakkit-
nukoon and Oliver 2011] used a location-based online social networking data to sense
geo-social activity and analyze the underlying social activity distribution of three dif-
ferent cities.
4.4. Location Services
With the development of sensing devices equipped with sensors, MCS has been widely
used in location services. The benefits of location awareness promote many popular
mobile applications, such as location search, location-based advertising (e.g., dissemi-
nating electronic coupons in a market [Garyfalos and Almeroth 2008]), indoor localiza-
tion (using WiFi signal strength to locate people/objects) [Rai et al. 2012; Kumar et al.
2014], etc.

4.5. Social Network Based Applications
Since individuals are highly involved in the crowdsensing activities, there are a large
number of social network applications developed from the crowdsensing data. Zheng
et al. [Zheng and Xie 2011] proposed an adaptive travel recommendation system re-
sulting from travelers’ historical GPS position records. By collecting and analyzing the
GPS trace of individuals, two types of recommendation approach are given. For the
first approach, the recommendation system generates a general list of hot places of
interest for users. The second approach is to provide a customized option based on par-
ticular needs of users. A tree-based structure is designed and combined with Hypertext
Induced Topic Search aided model to estimate the attraction of a place and user’s in-
clination. Similarly, position information sensed from the crowdsensing devices, like
mobile phones, is analyzed to create a recommendation according to individual’s in-
terest [Ye et al. 2011]. The recommendation is derived from the location information
among user’s social network, and it takes into account the social influence. For exam-
ple, close friends are likely to share the similar interests, and geographical influence,
i.e., people tend to visit the nearest place where their requirement can be satisfied.
Furthermore, random walk technique is used to compensate the bias of the basic ap-
proach when friends sometimes hold different preferences.
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Techniques Pros Cons Applicability Ref

Deduplication
Using metadata
for reducing
redundancy

Additional
information
of data is
required

Redundant
content
management

[Dao et al. 2014]

Compression
Low bandwidth
and storage
requirement

Existing data
accuracy loss

Bandwidth-
constrained
data trans-
ferring

[Zordan et al. 2014]

Machine learning
Fully automatic
information
classification

Requiring large
training dataset

Data-driven
city security
maintenance

[Ballesteros et al. 2013]

Context-aware

Monitor and
visualize
service of a
virtual world

High bandwidth
requirement

3-D Web-based
interface [Yao et al. 2014]

Peer-to-peer
Independent to
centralized
infrastructure

Low reliability
Android based
distributed
crowdsensing

[Rothenpieler et al. 2014]

Opportunistic
sensing Energy-efficient Poor real-time

performance
Collecting mobile
sensor data [Lane et al. 2013]

Optimal
estimation

Low storage
requirement

High computation
workload

Earthquake
center estimation [Sakaki et al. 2010]

Data filtering

Increase the
accuracy of
information
prediction

Priori knowledge
and accurate
model is necessary

Recommendation
system for taxi
service

[Yuan et al. 2013]

Content-aware

Content simil-
arity detection
contributes
to redundancy
reduction

High energy
overhead for
the similarity
detection

Image-transferring
in disaster area [Weinsberg et al. 2012]

Table III: Comparison of different types of techniques in mobile crowdsensing.

Crowdsensing applications always involve a huge amount of data related to social
activities. Thus, many researchers focus on public security and communication en-
hancement in disasters. As for the public security issues, Sheth et al. [Sheth 2009]
introduced a system combining human-involved crowdsensing, Web 2.0 and mobile
computing, to establish a platform for recognizing the emergency, analyzing the situ-
ation of accidents and calling for the help automatically. The holistic situation aware-
ness model proposed includes three pivotal phases, namely observation, perception and
communication. For instance, when a traffic accident happens, individuals around the
scene may take images to share on-line. Then, the metadata, longitude and latitude
of the image are extracted and the emergency situation is recognized while the signal
can be immediately broadcast to related people. Even the situation-aware crowdsens-
ing is an effective way to detect and convey the emergency information, the privacy
of involved individuals should be protected. Thus, Ballesteros et al. [Ballesteros et al.
2013] designed iSafe, a privacy preserving method, analyzing the crowdsensing data
from individuals’ phones, to improve the safety of the city. By their approach, snap-
shots of taken by both the user’s phone and the geosocial network users are used for
analysis, e.g., the level of the safety of a place is determined.

In disaster scenarios, smart wearable device based crowdsensing plays an important
role in guaranteeing the communication with the outside in congested environment.
Sakaki et al. [Sakaki et al. 2010] presented an algorithm taking advantage of the real-
time characteristic of Twitter to immediately detect the earthquakes. The key idea
is as simple as observing the tweet activities, e.g., whenever an earthquake happens,
tons of Twitter posts relevant to the earthquake will be created during a short period of
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time. Similarly, large social events are also able to be captured in the same way. During
the capturing process, a well-deigned event classifier is necessary. They used Kalman
and particle filtering method to obtain an optimal estimation of the earthquake center
and the trace of typhoon.
4.6. Healthcare
Health is becoming an increasingly important challenge. Wireless sensors are worn
by people for heart rate monitoring and blood pressure monitoring, and they can com-
municate their information to users’ equipment. MCS can utilize these existing data
for large scale healthcare study. Based on the wealth of the data collected from MCS
systems, the health monitoring and management services can be roughly categorized
as: public health monitoring and personal well-being management [Guo et al. 2015].
• Public health monitoring: MCS can facilitate the monitoring of disease outbreaks
and crisis management, which potential brings economic benefits. For example, the
Ministry of Health in Cambodia uses GeoChat8, a crowdsensing interactive mapping
application, for disease reporting and staff alerts which enables quick responses to the
disease outbreaks and can better control the spread of diseases. Also, Wesolowski et
al. [Wesolowski et al. 2012] use large scale spatially mobile phone data and malaria
prevalence information from Kenya to identify the dynamics of human carriers that
drive parasite importation between regions.
• Personal well-being management: MCS can also facilitate personal well-being man-
agement by monitoring users’ daily activities. For example, Rabbi et al. [Rabbi et al.
2011] presented a mobile sensing system for measuring mental well-being from behav-
ioral indicators in natural everyday settings. In order to lose weight, the work [Dong
et al. 2012] presents a method for measuring intake via automated tracking of
wrist motion. The method uses a watch-like device embedded with a micro-electro-
mechanical gyroscope to detect and record an individual’s eating activity. Figure 3 il-
lustrates the steps for using the watch-like device to detect and record an individual’s
eating activity.

 

(a) Press and hold

 

(b) Recording turned on

 

(c) Recording

 

(d) Pre-meal marker

 

(e) Eat and drink

 

(f) Post-meal marker
Fig. 3: Process of using watch-like device for detecting and recording an individual’s eating activity.

4.7. Public Safety
Public safety means the detection or protection from social or natural events such as
crimes, disasters that could endanger the safety of average citizens.
• Crime prevention and investigation: Crime is becoming one of the key problems in
modern society. Ballesteros et al. [Ballesteros et al. 2012] presented iSafe, a privacy

8InSTEDD. (2006). GeoChat, Sunnyvale, CA, US: http://instedd.org/technologies/geocha.
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Application type Typical Applications
Combining crime mapping and crowdsourcing [Blom et al. 2010; Garbett et al. 2015]
Perception of crime mapping [Kounadi et al. 2014; Quinton 2011]

Table IV: Classification of applications for crime prevention.

preserving algorithm for computing safety snapshots of co-located mobile device users
and integrated their approach into an Android application for visualizing safety level.
They also investigated relationships between location dependent soia network activity
and crime levels. Cvijikj et al. [Cvijik et al. 2015] implemented a mobile application,
a crowdsourcing approach, for crime prevention, which focuses on the usage intention
and motivations for content creation and consumption. Table IV shows different appli-
cation types of crime prevention.
• Disaster management and relief: Events such as the big flood in mid-Europe 2013
and the typhoon Haiyan in Philippines show that people become increasingly active
in responding to disasters. MCS has been used for disaster management and relief.
Rogstadius [Rogstadius et al. 2013] presented CrisisTracker, a crowdsourced social
media curation system, for disaster awareness. CrisisTracker collects data from Twit-
ter based on predefined filters (i.e., keywords), and groups these tweets into stories
for analysis. Hua et al. [Hua et al. 2015] proposed SmartEye, a near-real-time and
cost-efficient mobile device based crowdsourcing, for rapid disaster relief in the cloud-
assisted disaster environment. SmartEye utilizes the in-network deduplication strat-
egy to obtain fast operation response and significant bandwidth savings so that it can
efficiently support the image retrieval in the context of disaster relief.

5. CHALLENGES AND FUTURE RESEARCH DIRECTIONS
In this section, we first discuss further challenges related to crowdsensing for IoT, and
then we provide guidance on the future research trends of crowdsensing for IoT.

5.1. Challenges in Mobile Crowdsensing
5.1.1. Automated configuration of sensors. In traditional pervasive/ubiquitous computing,

only a limited number of sensing devices (e.g., sensors) are connected to the applica-
tions (e.g., smart farm, smart river). However, in IoT, a large number of sensing devices
are expected to be connected together over the Internet. Therefore, the connection and
configuration of sensing devices to applications become a key challenge. It is infeasible
to connect all sensing devices manually to an application or to a middleware [Perera
et al. 2013]. An automated or at least semi-automated process should be available to
connect sensing devices to applications. To accomplish the tasks of connecting sensing
devices to applications, applications should be capable of understanding the sensing
devices (e.g., capabilities). Several recent developments such as Transducer Electronic
Data Sheet (TEDS) [IEE 2007], Open Geospatial Consortium (OGC) Sensor Web En-
ablement related standards like Sensor Markup Languages (SensorML) [Botts and
Robin 2007] show the future trends of carrying out research work for addressing the
challenge of connection and configuration of sensors to applications.

5.1.2. Resource limitations. Sensing devices (e.g., sensors and mobile phones) usu-
ally have limited resources, and the resource limitations arise as a challenge for
crowdsensing. Although more resources (e.g., computing, bandwidth) are provided for
mobile phones compared to mote-class sensors, mobile phones still face the problem of
resource limitations [Miluzzo et al. 2008; Guo et al. 2015].

Different types of sensed data may be independent with each other because of the
multi-modality sensing capabilities of sensing devices. In practical scenarios, different
types of sensed data may be used for the same purpose. However, the diversities on the
quality and resource consumption of the sensed data pose an obstacle for improving
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the quality of data with low resource consumption. Therefore, it is still a challenge to
improve the quality of data and minimize the resource consumption.

5.1.3. Data redundancy, quality, and inconsistency. Multiple participants involved in the
same sensing activity usually incur data redundancy. Enormous amounts of data con-
sumes much resource. By intelligently reducing the redundant data and the transfers
of redundant content, the volume of the data and the traffic load can be significantly
reduced. Hence, it is important and necessary to eliminate the redundant data, which
can help reduce the resource consumption (e.g., storage resource and bandwidth re-
source) and thereby reduce the cost. A key challenge here however, is detecting redun-
dant data. That is, detecting ‘what content is similar’ [Dao et al. 2014]. For example,
the work [Dao et al. 2014] designs a framework for detecting similarity among data
contents and finding similar content. By restricting the transfer of similar content,
the work [Dao et al. 2014] reduces the resource consumption and thereby reducing the
cost, and provides good QoS in bandwidth constrained wireless networks.

However, another issue data inconsistency arises, which poses another challenge.
For example, due to the different capabilities of sensing and computing, a set of mobile
devices that run the same algorithm and sense the same event may obtain different
inference results, which results in data inconsistency problem.

In addition, the data derived via the crowdsensing process is often noisy and in-
complete, which affects the quality of the data. Also, as the redundant data has been
reduced, another potential issue is ‘how to ensure the quality of data’, which also poses
a challenge, and needs to be handled.

5.1.4. Motivation and incentives. Motivation and incentives are an important part of
MCS because they encourage users to participate in a crowdsensing application and
the success strongly depends on the contribution of the volunteers. Prior literature
demonstrated the role of motivation and incentives as a key factor. Due to the privacy
issues, contributors are reluctant to carry out tasks. In many cases, they do not get ben-
efit from their work (participation). Although, some strategies have been carried out to
motivate users to participate in crowdsensing tasks, users are still not very actively in
carrying out small tasks. Therefore, providing effective motivation and incentives still
is a challenge for MCS.

5.1.5. Privacy, security, and data integrity. The sensing devices potentially collect sensitive
data of individuals [Krontiris and Dimitriou 2013; Ballesteros et al. 2013; Zanella et al.
2014; Chen et al. 2015; Li et al. 2014; Stansfeld 2003; Rothenpieler et al. 2014; Teixeira
et al. 2015; Sherchan et al. 2012], thus privacy arises as a key problem. For example,
the GPS sensor readings usually record the private information of individuals (e.g.,
the routes they take during their daily commutes, and locations [Krumm 2009]). By
sharing the GPS sensor measurements, individuals’ privacy can be revealed. Hence,
it is important and necessary to preserve the security and privacy of an individual.
Also, the GPS records the information which is from daily commutes shared within a
larger community and can be used to learn the information of traffic congestion in a
city [Hull et al. 2006]. Thus, it is also necessary to enable the crowdsensing applica-
tions so that individuals can better understand their surroundings and can ultimately
benefit from the information sharing. To well preserve the enormous amounts of pri-
vate information of individuals, not only methodology efforts but also systematic stud-
ies are needed. The AnonySense architecture, proposed in [Cornelius et al. 2008], can
support the development of privacy-aware applications based on crowdsensing. Also,
it is important to guarantee that an individual’s data is not revealed to untrustworthy
third parties. For example, malicious individuals usually contribute erroneous sensor
data. Meanwhile, for their own benefit, malicious individuals may intentionally pol-
lute the sensing data. The lack of control mechanisms to guarantee source validity

ACM Transactions on Cyber-Physical Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:16 J. Liu et al.

and data accuracy can result in information credibility issues. Therefore, it is neces-
sary to develop trust preservation and abnormal detection technologies to ensure the
quality of the obtained data.

The problem of data integrity that ensures the integrity of individuals’ sensor data,
also needs to be well addressed. In the existing literature [Lenders et al. 2008; Saroiu
and Wolman 2009], although some methods have been proposed, they typically rely
on co-located infrastructure that may not be installed as a witness and have limited
scalability, which makes such kind of methods prohibitive and unavailable at times.
The reason behind this is that the approach relies on the inputs which is from the
installation of expensive infrastructure. Another approach for handling data integrity
problem is to sign the sensor data (e.g., typically, trusted hardware installed on mobile
phones are used for this purpose), i.e., a trusted platform module signs a SHA-1 digest
of the sensor data. This approach is potentially problematic due to the reason that the
verification process has to be done even in the software.
5.2. Challenges of IoT

5.2.1. Availability. Availability is an important challenge in IoT systems. Availability of
IoT can be realized in the hardware and software levels to provide anywhere and any-
time services for customers. Software availability is the ability of IoT applications to
provide services for everyone at different places simultaneously, and hardware avail-
ability means that the devices are available all the time that are compatible with the
IoT functionalities and protocols. Replicating critical devices and services is a common
solution for achieving high availability of IoT services.

5.2.2. Reliability. Reliability refers to the power working of the system based on the
system’s specification. Reliability reflects the success rate of the delivery of IoT ser-
vice, and it is even more critical than availability and it has more strict requirements
when it involves the field of emergency response applications [Maalel et al. 2013]. The
critical part must be resilient to failures so that the IoT system can provide reliable
information distribution. To ensure the quality of the services in IoT systems, the re-
liability should be implemented in both software and hardware throughout all the IoT
layers.

5.2.3. Mobility. Since most of the services of IoT are expected to be delivered to mobile
users and connecting users with their desired services continuously, mobility is also a
challenge. Service interruption for mobile devices can occur when the devices transfer
from one gateway to another. Future Internet presents a more ubiquitous and mobile
Internet. As the number of smart devices increases sharply in the IoT systems, the mo-
bility management becomes necessary. Internet of Vehicles (IoV) becomes an emerging
area of the IoT, and it needs a precise attention to the mobility issues. The work [Zhu
et al. 2011] studies the mobility in vehicle-to-vehicle networking, and it discusses var-
ious solutions for handling the mobility issue in vehicle-to-vehicle networking.

5.2.4. Management. The connection of billions or trillions of devices poses another
challenge for managing the Fault, Configuration, Accounting, Performance and Secu-
rity (FCAPS). To address the challenge of device management, a number of companies
have proposed unique solutions to the market. For example, UpdateLogic proposed a
device management solution called NetReady, and it has found a market in supporting
smart TVs and other connected consumer electronics. Ihiji provides the solutions of
remote network management for smart home and other control solutions.

5.2.5. Scalability. The scalability of IoT indicates the ability to add new devices, ser-
vices and functions for customers without compromising the quality of existing ser-
vices. Adding new operations and supporting new devices is a nontrivial task, and
the diversity of hardware platforms and communication protocols makes it more dif-
ficult. The Internet lacks the capability of the support for unique identification and
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transparency. A new network architecture is needed to overcome the current Internet
limitations. The expected ubiquity of computing and communication resources should
be considered to improve the connectivity and robustness of wireless sensor and actual
sensor networks.

5.2.6. Interoperability. IoT is the connectivity between people, processes and things. A
large number of heterogeneous things belonging to different platforms need to be han-
dled in the IoT, thus end-to-end interoperability becomes another challenge. Address-
ing this challenge is essential to unlock the full potential of the IoT. To ensue the
quality of the deliverability of services for customers, interoperability should be con-
sidered by both application developers and IoT device manufacturers. To handle the
issue of interoperability, an increasing number companies and products are beginning
to emerge that enable interoperability through open-source development. For exam-
ple, third party associations such as the IEEE are working with global engineering
communities to standardize and facilitate collaboration. Qualcomm develops AllJoyn,
which is an open source project that provides a universal software frame and set of
system services enabling interoperability.

5.3. Future Research Directions
Below we present some future research directions of crowdsensing for IoT. Figure 4
summarizes the future research directions of crowdsensing for IoT.

5.3.1. Optimization of multiple factors like localization, prediction, energy budget. The trade-off
between higher location accuracy and lower energy consumption for MCS devices is
critical to successfully implement various algorithms [Howe 2006; Susmita and Anjali
2012; Kirak et al. 2013; Hasan and Curry 2014; Vasilescu et al. 2005]. For example, in
the solution proposed by Lane et al. [Lane et al. 2013], to lower the energy overhead
based on the context information, such as position, its real-world performance suffers
from the inaccurate localization model. Besides, for MCS, especially mobile device
platform, more than one sensor can be used to collect data and sense the context, such
as dynamic status, localization, and noise magnitude. Thus, the reliability and the
amount of information of context may be increased as in the work [Sherchan et al.
2012] in which the proposed CAROMM is able to acquire various stream data from
mobile devices and process them based on context attached, e.g., the location and time
mark on photos. This further contributes to the performance of crowdsensing.

5.3.2. Privacy protection. Privacy protection is a principal issue that has not yet been
well addressed [Stankovic 2014; Whitmore et al. 2014], especially in the crowdsensing
area. There is a large body of work focusing on privacy protection [Lane et al. 2013;
Krontiris and Dimitriou 2013; Sherchan et al. 2012]. The CAROMM framework, mak-
ing use of the context of the data from user’s mobile devices, bears high risks to leak
the privacy information of users since the information like location and time, which
are required to be protected. Obviously, the privacy risk must be reduced to an accept-
able level before any crowdsensing activity is conducted. Otherwise, the user’s privacy
may be exposed to the public. Lane et al. [Lane et al. 2013] conducted research on the
automatic data anonymization by masking particular information from the raw data
sensed by the local mobile devices. Also, the IoT additionally introduces unique chal-
lenges to privacy, and many of them go beyond the current existing data privacy issues.
This mainly stems from integrating devices into the environments without users con-
sciously using them. Moreover, many IoT scenarios involve device deployments and
data collection activities with a multinational or global scope that cross social and
cultural boundaries, which poses a new challenge for developing a broadly applicable
privacy protection model for the IoT.

5.3.3. A universal method. To the best of our knowledge, current crowdsensing strate-
gies can only be applied to limited contexts, i.e., either mobile or stationary plat-
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Fig. 4: Future re-
search directions of
mobile crowdsensing
for IoT.
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form [Lane et al. 2013; Forsström and Kanter 2014; Kamra et al. 2006; Distefano et al.
2015; Brambilla et al. 2014; Bisdikian et al. 2013; Bengtsson et al. 2011]. PCS (Lane
et al. [Lane et al. 2013]) can only be applied to the tasks that can be done without
human participation and cannot be used in dynamic condition, e.g., in a driving car.
The data redundancy handling method proposed in [Dao et al. 2014] is able to man-
age the image data successfully while it can do nothing on videos although the image
and video are both the common information medium. Since a universal strategy is
able to significantly reduce the cost for modification to meet the requirements of var-
ious crowdsensing scenarios, especially for the applications, i.e., only one application
is required for performing multiple tasks. Indeed, the limitation impairs its commu-
nication efficiency in disasters. A crowdsensing strategy being capable of centralized
and distributed data collection is also a direction for future research, since researchers
usually focus on one of them. CARE [Weinsberg et al. 2012] only uses a peer-to-peer
structure to implement an information-aware redundant data reduction while authors
in [Dao et al. 2014] designed their redundancy elimination method in bandwidth con-
strained wireless networks with the aid of the infrastructure. Since in some particular
scenarios, such as disaster field, the feasibility and flexibility quality of the solution
is non-trial, we believe that a hybrid approach combining advantages from different
system architectures would be necessary.

5.3.4. Injecting Knowledge into Big Data. In an IoT world, a huge amount of raw data
are continuously collected. It is worthwhile developing techniques to convert the raw
data into knowledge. Take raw data in medical area as an example, raw streams of
sensor values should be converted into semantically meaningful activities performed
by or about a person, i.e., eating, respiration, or exhibiting signs of depression. The
main challenges are how to interpret data and how to format the knowledge. Specifi-
cally, the challenges are mainly reflected in how to address noisy, physical world data
and how to develop new techniques without suffering the limitations of Bayesian or
Dempster-Shafer schemes, which needs to know priori probabilities and the cost of
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computations. Although rule based systems may be adopted, they are two ad hoc for
some applications.

The amount of sensor data collected is enormous. A huge amount of real-time sensor
data streams will exist, thus it is not rare that a given sensor data stream will be
used in many different ways for different inference purposes. Therefore, enabling data
streams to act as primitives for unexpected future inferences will be an interesting
research problem.

After the knowledge has been created, another challenge is how to better control or
make good decisions in using the created knowledge. However, to ensure the reliability
of the system, it is important and necessary to minimize the number of false negatives
and false positives and guarantee safety in making decisions, which is a non-trivial
task.

5.3.5. Intelligent data processing. Current methodology for data deduplication can be
mainly categorized as: real-time process and post-process [Zhan et al. 2015; Kazmi
et al. 2014]. However, as the increasingly enlarging dataset and complex data type,
under the limited time, bandwidth and other resource budget, machine learning
techniques may play a non-negligible role. The data management method presented
in [Dao et al. 2014] can be improved by training the algorithm in advance and then
using the trained parameters to improve the efficiency of redundancy detection. On
the other hand, a portion of the sensing device’s storage can be used to store the
metadata, which can be used to set different priorities for different data types. Com-
bined with the machine learning techniques, the priority can be arranged to the data
automatically based on their relevance to the requirement, e.g., the image of injured
people with exact location in a disaster scenario may be uploaded with high priority.

Since data classification plays a pivotal role in crowdsensing technology and ma-
chine learning is the current focus in that field, machine learning based crowdsensing
method can improve the performance of the system. Zheng et al. [Zheng et al. 2013]
designed a semi-supervised learning approach consisting of a spatial classifier and a
temporal classifier to learn the features of the quality of the air in the entire city and
then used it to classify the degree of the air pollution. Two essential parts of their
method are to select effective features of the air for machine learning and pollution
classification and ensure the size of the training set for the machine learning program.
Besides, machine learning based crowdsensing approaches are also able to detect the
road surface problems automatically. Eriksson et al. [Eriksson et al. 2008] proposed ef-
ficient methods to use the taxis and on-board sensor sensing to contribute to the road
maintenance with the aid of machine learning. The establishment of the training data
and the design of the features are their future research work.

5.3.6. Social Internet of Things. Real humans are believed to understand and answer
better than a machine, and they are the most “intelligent machines” [Shen et al. 2015a;
Liu et al. 2015]. A large number of individuals tied in a social network can provide bet-
ter answers to complicated problems than a single individual (or even a knowledgeable
individual) [Atzori et al. 2012]. The collective intelligence emerging in social networks
can help users find information (e.g., answers to their problems), which attracts many
interests. Social networks have the advantage of efficiently discovering and distribut-
ing services, and social networks are utilized by many systems, such as Yahoo! An-
swers, Facebook, for sharing the information (e.g., knowledge). Although many tech-
niques have been proposed for social networks and IoT, the integration of social net-
works and IoT still faces some challenges. For example, the scalability problem will
emerge as the number of embedded computing and communication devices will soon
become too large. Also the trustworthiness is another challenge faced by the SIoT. At-
zori et al. [Atzori et al. 2012] identified appropriate policies for the establishment and
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Reference Addressing Problem Technology

[Nitti et al. 2014] Trustworthiness
management

Subjective & objective model Real-time
image sharing in disaster situation

[Atzori et al. 2012] Integration of social netwo-
rking concepts into the IoT

Design an architecture for the IoT; analyze
the characteristics of the SIoT network
structure using simulation

[Nitti et al. 2015] Friendship selection Analyzing possible strategies for selection of appropriate
links for the benefit of overall network navigability

[Teixeira et al. 2015] Secure the IoT Treat the distributed system as a single body;
crosscheck information inferred from different nodes

[Atzori et al. 2014] Increasing levels of social
involvement of the objects

Analyze the major opportunities arising from the
integration of social networking concepts into the IoT

[Nitti et al. 2014] Network Navigability
in SIoT

Analyzing possible strategies for selection of appropriate
links for the benefit of overall network navigability

[Girau et al. 2013] Implementation of
the SIoT Platform Use RESTful approach

[Chen et al. 2015] Trust-based Service
Management in SIoT Adaptively control and manage trust

Table V: A list of representative works on SIoT.

the management of social relationships between objects in the way that the resulting
social network is navigable. Nitti et al. [Nitti et al. 2014] defined the problem of trust-
worthiness management in the social IoT, and they presented two models: subjective
model and objective model, for trustworthiness management starting from the solu-
tions proposed for P2P and social networks. Table V summarizes the representative
works on SIoT. Therefore, there is a great potential and prospect for integrating social
networking into Internet of Things, which will be an important research direction.

5.3.7. Humans in the Loop. Since many applications of IoT involve humans, that is, hu-
mans and things will operate synergistically. Human in-the-loop systems bring oppor-
tunities to broad the range of applications which include energy management [Lu et al.
2010], health care [Kay et al. 2012], and automobile systems [Burnham et al. 1974; Liu
and Salvucci 2001]. Modeling human behaviors is still a long way to go though having
human in the loop has its advantage.

6. BIG DATA ANALYTICS AND CLOUD IN SUPPORT OF THE IOT
As the development of IoT system, the demand on the storage for the IoT system for big
data analytics increases. Although, some platforms for big data analytics like Apache
Hadoop have been developed, the systems are not strong enough for big data needs
of IoT. Cloud computing offers a new management scheme for big data, however it
involves many challenges for employing cloud computing for IoT. For example, securing
the IoT cloud-based service poses a challenge. Therefore, big data analytics and cloud
in support of the IoT will be a research direction.

7. CONCLUSIONS
The IoT has attracted much attention over the past few years. Numerous sensing de-
vices emerge in our living environments, which creates the IoT integrating the cyber
and physical objects. MCS plays an important role in the IoT paradigm. Sensors con-
tinuously generate enormous amounts of data, which consumes much resource, such
as storage resource for storing data and bandwidth resource for data transfer. Previ-
ous works demonstrate that there is significant amount of redundancy in sensor data.
Thus, redundancy elimination of sensor data is important and worthwhile, which can
significantly reduce the cost (e.g., bandwidth cost for data transfer) and facilitate the
timely delivery of critical information by reducing the traffic load, and thereby help
achieving good QoS. In this paper, we review the mobile crowdsensing techniques and
challenges. We focus on the discussion of the resource limitation and QoS (e.g., data
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quality) issues and solutions in mobile crowdsensing. A better understanding of re-
source management and QoS estimation in mobile crowdsensing can help us design
a cost-effective crowdsensing system that can reduce the cost by fully utilizing the
resource and improve the QoS for users. In the end of the paper, we describe some
challenges related to crowdsensing for IoT, and discuss some of the trends in the mo-
bile crowdsensing for IoT. In the future, we will give an in-depth study of challenges
and techniques, solutions for addressing challenges in mobile crowdsensing for IoT,
and we will also analyze the production systems and provide case studies.
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