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Abstract Internet of Things (IoT) is one of the greatest technology revolutions in
the history. Due to IoT potential, daily objects will be consciously worked in har-
mony with optimized performances. However, today’s technology is not ready to
fully bring its power to our daily life because of huge data analysis requirements in
instant time. On the other hand, the powerful data management of cloud computing
gives IoT an opportunity to make the revolution in our life. However, the traditional
cloud computing server schedulers are not ready to provide services to IoT because
IoT consists of a number of heterogeneous devices and applications which are far
away from standardization. Therefore, to meet the expectations of users, the tradi-
tional cloud computing server schedulers should be improved to efficiently schedule
and allocate IoT requests.

There are several proposed scheduling algorithms for cloud computing in the lit-
erature. However, these scheduling algorithms are limited because of considering
neither heterogeneous servers nor dynamic scheduling approach for different pri-
ority requests. Our objective is to propose Dynamic Dedicated Server Scheduling
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for heterogeneous and homogeneous systems to efficiently provide desired services
by considering priorities of requests. Results show that the proposed scheduling al-
gorithm improves throughput up to 40% in heterogeneous and homogeneous cloud
computing systems for IoT requests. Our proposed scheduling algorithm and related
analysis will help cloud service providers build efficient server schedulers which are
adaptable to homogeneous and heterogeneous environments by considering system
performance metrics, such as drop rate, throughput, and utilization in IoT.

Keywords Internet of Things · Cloud Computing · Analytical Model · Heteroge-
neous and Homogeneous Multi server ·Multi-class ·Queuing System · Performance ·
Priority.

1 Introduction

One of the greatest technology revolutions is undoubtedly Internet of Things (IoT).
Due to the potential of IoT, daily objects can be programmable (called smart devices)
and consciously work in harmony with optimized performances [1–5]. Therefore, IoT
is changing the way how daily objects (such as phones to smartphones, TV to smart
TV, etc.) work in our life. Regularly, the number of IoT capable devices is increasing.
The number of smartphones and tablets for 2013 passed one billion and the expected
number for 2017 is almost two billion [6]. However, the expected number of IoT
device units in 2020 is 20 billion [4]. Although the number of Internet-connected
devices increases, today’s technology is not ready to fully bring the power of IoT in
our daily life because a huge amount of data, which is generated by many Internet-
connected devices, is required to be analyzed. On the other hand, the powerful data
management of cloud computing gives IoT an opportunity to make the revolution in
our life.

Simplicity of usage, flexibility of data access, ease of maintenance, time and en-
ergy efficiency, and pay as you go policy have already increased the usage of cloud
computing over the traditional computing [7,8]. However, the traditional cloud com-
puting server schedulers are not ready to provide services to IoT because it consists
of a number of heterogeneous devices and applications which are far away from stan-
dardization. Therefore, to meet the expectations of users, the traditional cloud com-
puting server schedulers should be improved to schedule efficiently and allocate IoT
requests by considering the heterogeneity of servers and priorities (here requests can
also be software, platform, infrastructure, etc.).

Cloud servers are generally assumed to be homogeneous servers (that have equal
service rates and consist of the same type of devices) in the literature. However, cloud
servers, in reality, are heterogeneous servers (such as having different service rates)
because replacing failed or misbehaved servers with new and more powerful ones in
a multi-server system makes the multi-server system heterogeneous [9]. Therefore,
each server can support a limited number of Virtual Machines (VMs) according to its
power. In addition, a server is capable of serving some types of requests rather than
all types of requests in cloud computing [10]. Therefore, heterogeneous servers and
their capabilities should be considered while designing server scheduling algorithms
in cloud computing [11–14]. Because of heterogeneity, the distribution of requests
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to servers (namely allocation policy) also needs to be taken into account. Moreover,
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Fig. 1 Heterogeneous dedicated server groups for different types of IoT requests in cloud.

cloud computing systems must provide different levels of services to each application
class such as health and shopping applications (see Fig. 1) [15,16,13]; the expecta-
tions of those applications can be different. For example, service expectations and
requirements of a health application are naturally much higher than the shopping ap-
plication; this means some classes of applications must have higher priorities than
others. The definition of priority in cloud computing is, however, different from the
general definition of priority in queuing systems. In cloud computing, priority can
be used to decide the next request to be served and allocate the amount of resources
for each request[17,18]. Fig. 2 shows high and low priorities with and without pri-
ority levels (Ψ1 refers priority level of application 1 and Ψ2 refers priority level of
application 2).

As explained in our primary reports [17,18], the priority level term is used to
quantify the difference between high and low priorities. In cloud computing, priority
levels, which dynamically arranged according to service level agreement (SLA) and
urgency of service, can be used to determine the amount of needed resources by each
application. However, low and high priority terms without quantification do not mean
anything in terms of resource allocation in cloud computing (see Fig. 2 column one).
By using priority levels as shown in Fig. 2 (see second and third columns in Fig. 2)
can help to allocate resources to each application. Moreover, server scheduling al-
gorithms must use resources (such as servers) efficiently because of their limitations
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Fig. 2 High and low priorities without and with priority level.

and the excessive IoT data traffic flows. Therefore, server scheduling algorithms for
cloud computing must satisfy expectations of each type of IoT requests in heteroge-
neous environments without wasting resources [7]. Therefore, the aim of this work
is to propose a server scheduling algorithm by considering priority classes of IoT re-
quests, and homogeneous and heterogeneous cloud servers. In this paper, we focus
on more priority-based queuing analysis and priority-based scheduling algorithms in
cloud server systems because the priority-based scheduling algorithm is more real-
istic for IoT due to the existence of different classes of non-standardization applica-
tions. It is important to note that our developed methods are also applicable to VM
environments in cloud servers.

1.1 Objective and Contribution

The objective of this work is to improve and analyze the performance of cloud sys-
tems in terms of throughput, drop rate, and utilization by considering homogeneous
and heterogeneous servers, and priority classes of IoT requests because some IoT re-
quests such as a health application are delay sensitive. The key contributions of this
work can be summarized as follows: (i) Homogeneous Dynamic Dedicated Server
Scheduling (DDSS) and Heterogeneous Dynamic Dedicated Server Scheduling (h-
DDSS) are proposed, and the scheduling procedure is explained. (ii) The upper and
lower bound performance metrics (average occupancy, drop rate, average delay, and
throughput for each class of application) of the proposed scheduling algorithm are an-
alytically derived by using queuing theory. (iii) Derived expressions for performance
metrics are verified by extensive simulations. (iv) The performance of DDSS and h-
DDSS (here the performance of h-DDSS means as upper (Fastest Server First (FSF)
which is integrated into our h-DDSS method) and lower bound performances of h-
DDSS (Slowest Server First (SSF) which is integrated into our h-DDSS method)) are
tested and compared with existing ones.

Results show that h-DDSS and DDSS significantly improve the drop rate and
throughput by using proper priority levels for classes of IoT requests in cloud comput-
ing. Our proposed scheduling algorithm and related analysis will help cloud service
providers build efficient server scheduling algorithms which are adaptable to homo-
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geneous and heterogeneous server systems by considering the system performance
metrics, such as drop rate, throughput, and utilization.

1.2 Organization

The rest of the paper is organized as follows: In Section 2, previous works are sum-
marized and Section 3 has the details of DSS. The queuing models of the proposed
DDSS and h-DDSS with scheduling algorithms are presented in Section 4. Section 5
includes analysis of the scheduling algorithms to derive upper and lower bounds per-
formance of h-DDSS. In Section 7, we present the simulation and numerical results
and compare the performances of DSS, DDSS, and h-DDSS. Finally, Section 8 has
the concluding remarks with possible improvements in the future.

2 Related Works

Several research works [19–35] have been reported on performance analysis and
scheduling algorithms for cloud computing.

Some of the research works [19–24] have analyzed performances of cloud com-
puting systems. Authors in [19,20] proposed a queuing based analysis model for the
performance evaluation of cloud systems using web applications as queues and VMs
as service providers. Though creating unlimited VMs for each connection increases
allocation rate, this dramatically decreases the performance of the system due to high
response time [19] of each service request. Yang et al. [35] proposed a fault recov-
ering system for cloud services and analyzed the system as an open queue problem.
However, the result showed that the fault recovery system increases the average re-
sponse time. Authors in [21,24] evaluated the performance of several cloud service
providers for scientific computing tasks and found that the service providers are not
ready to serve large data sets. Authors in [22,23] used a single class and a single
queue model to analyze the performance of cloud computing and found several per-
formance distributions. However, there are two limitations of the above works [19,
35,20–24]: (i) Different classes of applications (such as health and shopping applica-
tions) are not considered. (ii) Usage of heterogeneous servers is not taken into account
in cloud networks. Therefore, a comprehensive analysis approach is not presented in
cloud computing for IoT.

The scheduling algorithms can be grouped based on scheduling characteristics,
such as dynamic or static, centralized or distributed, batch or immediate and co-
operative or non-co-operative as explained in [36]. However, above mentioned schedul-
ing groups do not consider distinct classes of requests. If classes of requests are
considered, then scheduling algorithms can be grouped as pre-emptive or non-pre-
emptive. Although pre-empitive scheduling algorithms can be used for tasks schedul-
ing, it is not efficient in cloud computing because the class which has low priority can
experience long delay and even dropping while getting service. Therefore, we have
used a modified non-pre-empiteve model for our scheduling algorithm.
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Several priority-based scheduling algorithms [29–34,15,16] are proposed for grid
and cloud computing. In [29], Bansal et al. use priority in a static round robin schedul-
ing algorithm to improve the performance. Authors in [32,33] dynamically schedule
tasks by considering QoS and the performance metrics such as delay, deadline and
execution times. In [34], Chtourou et al. consider resource constraints and apply two-
phase (priority and threshold) to optimize the performance. All of the works in [29,
32–34] are priority-based scheduling in grid computing. However, adapting grid in
cloud creates some efficiency problems, such as finding a server in grid to fully satisfy
resource requirements for a type application while finding several servers in cloud
to do so. In [31,30], authors develop priority-base scheduling algorithms in cloud
computing. In both works [31,30], absolute priority is used; therefore, increasing the
arrival rate of high priority requests leads to long delay for low priority requests.
A threshold solves long delay issue for low priority class, but finding an optimum
threshold is another problem.

Heterogeneity has recently been investigated in cloud computing [11–14,10].
Mars et al. [11,12] show the effects of the heterogeneity workloads on Google. Qi et
al. [14] investigate the energy efficiency and workloads heterogeneity in cloud com-
puting. Dastjerdi et al. [10], use different approaches by considering whole cloud
systems such as discovery of resources, checking compatibility, selection of servers,
and deployment to provide the required service to each user in heterogeneous envi-
ronments. In [13], Delimitrou et al. proposed a QoS scheduling algorithm for hetero-
geneous servers with Paragon.

The features of the proposed scheduling algorithms in [15,16,13] have some
aforementioned important requirements (such as addressing multiple classes of re-
quests). In [16,15,13], authors have considered multiple classes of requests in cloud
systems. Hu et al. [16] analyzed Shared Server Scheduling (SSS) and Dedicated
Server Scheduling (DSS) for two priority classes of requests and obtained the min-
imum amount of sufficient service rates to satisfy each class. Ellens et al. [15] pro-
posed a hybrid scheduling model for two priority classes of requests by reserving
some servers for each class and sharing remaining servers. Delimitrou et al. [13] have
used DSS for different type of classes. However, the recent works[15,16] which are
more related to our work, have considered neither priority levels of classes, nor het-
erogeneous server systems which require much harder complex analysis and [13] uses
DSS which is based on policies of absolutely no sharing between different groups of
servers for distinct classes of requests. The disadvantages of DSS are explained in
Section 3. Moreover, our primary reports [18,17] are the only existing works about
priority level scheduling algorithm.

In [17], we have proposed DDSS for homogeneous server systems and compared
the existing homogeneous Dedicated Servers Scheduling (DSS) with proposed DDSS
scheduling by assuming DSS would be able to update the number of servers dynami-
cally to see effects of priority level on the both scheduling. In [18], we have proposed
h-DDSS for heterogeneous server systems and compared DDSS and h-DDSS to com-
pare the performance of homogeneous and heterogeneous systems by using FSF and
SSF allocation in h-DDSS to compare the priority level effects on both DDSS and
h-DDSS. However, it is essential to analyze the performance of cloud computing by
comparing proposed homogeneous and heterogeneous server systems with existing
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DDS without any assumption to be able to understand dynamic scheduling effects on
the systems.

In this paper, we have proposed a novel server scheduling algorithm for cloud
computing by considering homogeneous and heterogeneous servers, priority level
classes of IoT applications, arrival rates of IoT requests, and service rates of servers
to answer mentioned requirements in IoT. The proposed server scheduling algorithm
also considers both shared and dedicated server system and dynamically updates the
assigned service rates (or the number of dedicated servers with VMs) for each request
class. We have also shown the impacts of priority levels and the dynamic arrange-
ment of dedicated servers (for each class) on the performance of the cloud computing
systems. We have compared existing DSS, our proposed Dynamic Dedicated Server
Scheduling for homogeneous servers (DDSS) and heterogeneous servers (h-DDSS).
Consequently, the performance metrics of heterogeneous and homogeneous systems
in cloud computing are analyzed and presented for IoT requests.

3 Dedicated Server Scheduling (DSS)

Fig. 3 shows DSS architecture for class 1 request (C1) and class 2 request (C2) traffic
flows (such as requests of health and shopping applications). Here, some servers are
used for C1 and the others for C2. The arrival rates of C1 and C2 are λ1 and λ2,
respectively. Each request is enqueued in the corresponding buffers (Q1 and Q2). A
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Fig. 3 Dedicated Server Scheduling (DSS).

new arriving request is dropped if the corresponding buffer is full. The service rate
of each server is µ and all servers are capable of serving all types of applications
(because of homogeneous server assumption) [16]. Each class of traffic is solely as-
signed to each dedicated server group as shown in Fig. 3. In the typical DSS [15,
16], there is absolutely no sharing of traffic among dedicated server groups, and the
number of servers for each class is not updated dynamically. Therefore, increasing
arrival rate of one type of requests (such as C1) can decrease the throughput of the
same type request although there may be available servers to provide services.

4 Dynamic Dedicated Server Scheduling

DDSS (see Fig. 4) frequently updates the number of dedicated servers with VMs for
each class according to priority levels and arrival rates of C1 and C2. In contrast
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to DSS, capabilities of servers can be different. h-DDSS (see Fig. 5) also frequently
updates the number of dedicated servers with VMs for each class according to priority
levels and arrival rates of C1 and C2. In contrast to DSS and DDSS, service rates of
servers can be different in h-DDSS. Capabilities of servers in h-DDSS can also vary
as assumed for DDSS.

4.1 Notations

The notations used in the rest of the paper are listed in Table 1.

4.2 Scheduling Algorithm

In this section, the scheduling procedure and the measurement of the service rate for
each class of request are presented.



Scheduling Internet of Things Applications in Cloud Computing 9

Table 1 Notations

pi Probability of i number of C1 requests in the system
λ Arrival rate of total requests in the system

λ1,λ2 Arrival rates of C1 and C2

Ψ1,Ψ2 Priority levels of C1 and C2

µi, ηi Service rate of ith server for C1 and C2

Kµi ,Kηi The number of VMs created in ith server for C1 and C2

µti, ηti Sum of service rates of dedicated servers for C1 and C2 until ith server
µtotal Total service rates of the system
m, k Number of dedicated servers for C1 and C2

N Size of Q1 and Q2

δC1 , δC2 Average delays for C1 and C2

nC1 , nC2 Average occupancies of C1 and C2

DC1 , DC2 Drop probabilities of C1 and C2

γC1 , γC2 Throughput for C1 and C2

δ Average delay for a request in the system
n Average occupancy in the system
D Drop probability of a request from the system
γ Throughput of the system

4.2.1 Service Rate Measurements

Our proposed server scheduling algorithm considers four crucial parameters that en-
able dynamic scheduling: (i) the arrival rates of C1 and C2 (λ1, λ2), (ii) the priority
levels ofC1 andC2 (Ψ1, Ψ2), (iii) the total service rate of servers in the system (µtotal)
(iv) total service rates of servers which are only capable of serving one type of re-
quests (µC1

for C1 type of requests and µC2
for C2 type of requests). Those four

parameters can be used to derive the required service rates (µtm and ηtk) for each
class traffic as follows:

µ
′

tm =

⌊
µtotalΨ1λ1
Ψ1λ1 + Ψ2λ2

⌋
. (1)

Indeed, µ
′

tm can be 0 because of floor function. Therefore, the scheduling algorithm
reserves one server with at least one VM when µ

′

tm = 0. Other than that, µ
′

tm is an
ideal service rate for C1 type of requests. However, it is hard to achieve equaling sum
of service rates of heterogeneous servers to µ

′

tm. Therefore, the faster servers (sum
of service rates of these servers are approximately equal to µitm) are assigned to the
higher priority class. Thus,

µtm =


m∑
i=1

µi ≈ µ
′

tm, µ
′

tm > µC1

µC1 , µ
′

tm ≤ µC1

(2)

η
′

tk = µtotal − µtm. (3)

ηtk =


k∑
i=1

µi ≈ η
′

tk, η
′

tk > µC2

µC2
, η

′

tk ≤ µC2

(4)
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Ψ2λ2 6= 0 guarantees ηtk 6= 0. The above dynamic approach also works for homoge-
neous systems. Following example represents the server assignment process for such
homogeneous systems. Assume there are five servers which are capable of serving all
classes of requests and each server rate is 10. Therefore, µtotal = 50. There are two
classes of requests (C1 and C2) having priority levels, Ψ1 = 5 and Ψ2 = 3, and ar-
rival rates λ1 = 20 and λ2 = 10. By substituting these values in Eqns. (1), (2) and (3),
we get µtm = 30 and ηtk = 20 because each server rate is 10. That means that three
servers are assigned to C1 and two servers are assigned to C2 if VMs are not used.
However, if VMs are deployed in servers, then the number of VMs are arranged for
each class. For example, if we assume, each virtual machine service rate is 1 then 38
VMs will be reserved for C1 and 12 VMs will be used for C2 (Here, we assume there
is at least one server which is capable of serving both C1 and C2 requests).

Eqn. (1) can easily be extended to a multi-class system with r number of class
types by assuming Ψiλi 6= 0 and i = {1, ..., r} as follows:

µ
′

tm1
=

⌊
µtotalΨ1λ1

Ψ1λ1 + Ψ2λ2 + . . .+ Ψrλr

⌋
. (5)

Here, µtm1
( =

m1∑
i=1

µi ≈ µ
′

tm1
or µC1

) is the total service rate assigned to C1. After

finding µtm1 , the remaining total service rate of servers are µ
′

total = µtotal − µtm1 .
Hence, the service rate assigned to C2 can be obtained as follows:

µ
′

tm2
=

⌊
µ

′

totalΨ2λ2
Ψ2λ2 + Ψ3λ3 + . . .+ Ψrλr

⌋
. (6)

Iteratively, following Eqns. (5) and (6), the dedicated number of servers for each class
can be measured.

4.2.2 Scheduling Algorithm Procedure

The properties of the proposed scheduling algorithm are summarized: (i) classifica-
tion of requests, (ii) assignment of different server groups to distinct request classes,
(iii) creation of VMs in dedicated servers for requests if needed, (iv) regularly updat-
ing the number of assigned servers for each class based on the Eqns. (1), (2) and (3),
(v) non-pre-empiteve model (Note: When the scheduling algorithm computes the new
values of µtm and ηtk, some servers which were previously serving C2 will be as-
signed to C1 (see Figs. 5 and 4). The servers will continue to serve C2 requests until
they finish them. However, the scheduling algorithm will not assign any new C2 re-
quests to the servers which are recently assigned to C1. This strategy protects the
requests (in service) from experiencing large delay or drop.), (vi) creating a limited
number of VMs in servers to avoid service degradation (creating at most Kµi

and
Kηi number of VMs).

Two thread scheduling procedure is illustrated in Fig. 6 for two classes. The duties
of the first thread are as follows: (i) The number of assigned servers to each class
is updated regularly based on the Eqns. (1), (2) and (3) (Time to arrange servers
means that it is time for periodic updating). (ii) The scheduling algorithm classifies an
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arrived request (one of classification method such as the one in [13] can be used. Here,
we assume that each request has a flag and the flag states that whether the request is
C1 or C2) and enqueues the request to the corresponding queue of servers that are
capable of serving to the request. (iii) Enqueuing process of requests continues while
requests arrive.

The duty of second thread is that the scheduling algorithm dequeues a request
from the queue then the dequeued request is forwarded to one of the available servers
which have less than active K number of VMs according to allocation policies. If all
active servers have alreadyK number of active VMs, the scheduling algorithm wakes
up a new server which has capability to serve the request (if there is an available
sleeping server). It is important to note that the waking-up priority is given to servers
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which are capable of serving both classes. The waking-up and sleeping process may
increase the responding time of the request, but reduces the number of active servers
to save energy. To decrease respond time, pre-waking up policy can be implemented.
However, pre-waking up policy sacrifices the energy efficiency. The above dequeuing
and allocation process continue until queues are empty. VM migration and resize
VM are not considered in this paper for simplicity but it will be integrated into our
developed method in the future.

5 Analytic Analysis

The various performance metric expressions of h-DDSS are analytically derived to be
able to approximately estimate the performance of cloud systems. By using derived
analytic expressions of the performance metrics, the performance of large sets of
cloud servers for a huge data of IoT requests can roughly be measured.

5.1 Assumptions

To make the model analytically tractable, it is assumed that the queuing system is
under heavy traffic flows, arrivals of requests follow Poisson distribution, and service
times of requests are exponentially distributed. Type of queue discipline used in the
analysis is FIFO. To make the model more realistic, we assume that the queue size is
finite and equal to N , service rates of all servers and the number of created VMs in
each server can be different (meaning the system is heterogeneous).

Because of heterogeneity, different allocation policies can be used. In our anal-
ysis, FSF and SSF allocation policies which are integrated into h-DDSS are used
to analyze the best and worst performances of h-DDSS. The best performance (up-
per bound) of the heterogeneous system is obtained by using FSF allocation and the
worst performance (lower bound) of the heterogeneous systems is obtained by using
SSF allocation because an arrived request can be served faster at servers which have
higher service rates and slower at servers which have lower service rates.

5.2 Derivation of Performance Metrics

The service rate of the system is a state dependent. When a request is in the system,
the service rate is µt1 = µ1 and when two requests are in the system, the service rate
is µt2 = µ1+µ2. The service rate of the system increases until all servers are utilized
(m servers for C1 and k servers for C2). Then the total service rate of the system is
fixed at µtm and ηtk (using Eqns. (2) and (3)) for C1 and C2, respectively. Assuming
µ1 ≤ µ2 . . . ≤ µm gives the performance metrics of SSF allocation policy in h-
DDSS. On the contrary, assuming µ1 ≥ µ2 . . . ≥ µm gives the performance metrics
of FSF allocation policy in h-DDSS. Thus, the lower and upper bounds of the per-
formance metrics, average occupancy, average delay, drop rate, and throughput (nC1 ,
δC1 ,DC1 , and γC1 ) are computed for a heterogeneous multi-server system [37]. Only
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the performance metrics of C1 are derived by using the same approach with [38] be-
cause the performance metrics of C2 can similarly be derived.

5.2.1 State probability

Fig. 7 shows the state transition diagram of the proposed model. pi represents the
probability of i number of C1 requests in the system, N is size of the queue and λ1
and µti represent the probabilities of the state transitions where i = 1, 2, . . . , m.

λ1

µt2

λ1

µtm

λ1

µtm

λ1 λ1

µtm
µt(m-1)

λ1

p1
p2 pm-1 pm pm+1 pm+N

p0

µt1

Fig. 7 State transition diagram of the proposed model.

State probability equations until mth state can be written as follows by using the
state transition diagram [39,37,38] in Fig. 7:

λp0 = µt1p1 ⇐⇒ p1 = p0
λ

µt1
,

λp1 = µt2p2 ⇐⇒ p2 = p0
λ2

µt1µt2
,

λp2 = µt3p3 ⇐⇒ p3 = p0
λ3

m∏
j=1

µtj

,

.

.

.

λpm−1 = µtnpm ⇐⇒ pm = p0
λm

m∏
j=1

µtj

.

(7)
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State probability equations after mth state are different because the system has only
m servers forC1 requests. Thus, state probability equations can be written as follows:

λ1pm = µtmpm+1 ⇐⇒ pm+1 = p0
λm+1
1

µtm
m∏
j=1

µtj

= p0
µmtmλ

m+1
1

µm+1
tm

m∏
j=1

µtj

,

λ1pm+1 = µtmpm+2 ⇐⇒ pm+2 = p0
λm+2
1

µ2
tm

m∏
j=1

µtj

= p0
µmtmλ

m+2
1

µm+2
tm

m∏
j=1

µtj

,

.

.

.

λ1pi−1 = µtmpi ⇐⇒ pi = p0
λi1

µi−mtm

m∏
j=1

µtj

= p0
µmtmλ

i
1

µitm
m∏
j=1

µtj

.

.

.

λ1pm+N−1 = µtmpm+N ⇐⇒ pm+N = p0
λm+N
1

µNtm
m∏
j=1

µtj

= p0
µmtmλ

m+N
1

µN+m
tm

m∏
j=1

µtj

.

(8)
where m < i ≤ m+N . Shortly,

pi =


p0

λi
1

i∏
j=1

µtj

, i ≤ m

p0
µm
tmρ

i

m∏
j=1

µtj

, m < i ≤ m+N
(9)

where ρ = λ1/µtm. It is known that (because sum of all possibilities equals to 1.)

m+N∑
i=0

pi = 1. (10)
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To find state probabilities, we need to measure p0 by using Eqn. (10).

1 =

m+N∑
i=0

pi

1 = p0 +

m∑
i=1

pi +

m+N∑
i=m+1

pi

1 = p0 +

m∑
i=1

p0
λi1
i∏

j=1

µtj

+

m+N∑
i=m+1

p0
µmtmρ

i

m∏
j=1

µtj

1 = p0

1 +
m∑
i=1

λi1
i∏

j=1

µtj

+
µmtm
m∏
j=1

µtj

m+N∑
i=m+1

ρi



1 = p0

1 +
m∑
i=1

λi1
i∏

j=1

µtj

+
µmtm
m∏
j=1

µtj

(N +m−m)(ifρ = 1)



(11)

Therefore, from Eqn. (11), p0 can be written as follows:

p−1
0 =


1 +

m∑
i=1

λi
1

i∏
j=1

µtj

+
µm
tm

m∏
j=1

µtj

m+N∑
i=m+1

ρi, ρ 6= 1

1 +
m∑
i=1

λi
1

i∏
j=1

µtj

+N
µm
tm

m∏
j=1

µtj

, ρ = 1
(12)

where ρ = λ1/µtm.

5.2.2 Drop probability and throughput

The drop probability of a request from the system is the final state probability, pm+N .
Therefore, the drop rate and throughput can be obtained as follows:

DC1 = pm+N = p0
µmtmρ

m+N

m∏
j=1

µtj

. (13)

Therefore, throughput is

γC1 = λ1(1−DC1). (14)
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5.2.3 Average class occupancy and delay

Average class occupancy and delay can be formulated by using state probabilities [37].
Average occupancy expression, nM/M/1/N for M/M/1/N queue is

nM/M/1/N =

N∑
i=1

ipi. (15)

However, M/Mi/m/N queue system has m servers which means first m requests
get service immediately. Therefore, from the above state probabilities (Eqn. (9)), nC1

will be (state probability must be pi where m < i ≤ m + N to have request in the
queue. If the probability is pm+1, there is only one request in the queue because there
are m servers. Therefore, we have (i−m)pi in Eqn 16).

nC1 =

m+N∑
i=m+1

(i−m)pi. (16)

Therefore, nC1 can be rewritten as follows by using Eqns. (9) and (16):

nC1 =
m+N∑
i=m+1

(i−m)p0
µmtmρ

i

m∏
j=1

µtj

= p0
µmtm
m∏
j=1

µtj

m+N∑
i=m+1

(i−m)ρi.

(17)

After simplification of Eqn. (17) by using geometric series, finally we will have the
following expressions for nC1 ;

nC1 =


p0

µm
tm

m∏
j=1

µtj

ρm+1
(

1−(N+1)ρN+NρN+1

(1−ρ)2

)
, ρ 6= 1

p0
µm
tm

m∏
j=1

µtj

(
N(N+1)

2

)
, ρ = 1

(18)

Using Little’s law, and Eqns. (14) and (18), average delay can be obtained as follows:

δC1 =
nC1

γC1
. (19)

5.3 Performance Metrics of the System

In subsection 5.2, the performance metrics of C1 are derived. Similarly, the perfor-
mance metrics of C2 can similarly be obtained for the system. In this subsection, the
system performance metrics are derived by using the performance metrics of C1 and
C2.
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5.3.1 Average occupancy

We have taken sum of the average C1 and C2 occupancies in the system to find
the overall average occupancy in the system. Overall average occupancy, n, can be
computed as follows:

n = nC1 + nC2 . (20)

5.3.2 Drop probability

After finding the drop rate of each class of requests in the system, we have computed
the drop rate of a request, D, without considering type of request, as follows:

D =
λ1D

C1 + λ2D
C2

λ1 + λ2
. (21)

5.3.3 Throughput

By using throughput of C1 and the number of C2 requests in the system, the total
throughput of the system, γ, can be obtained as follows:

γ = γC1 + γC2 . (22)

5.3.4 Average delay

The average delay which is experienced by each request in the system can be obtained
as follows;

δ =
γC1δC1 + γC2δC2

γ
. (23)

6 Simulation of the System

Discrete event simulation has been carried out under the aforementioned scheduling
policies in Section 4 by following M/Mi/c/N [37] procedures. However, the sim-
ulation is implemented by using parameters in Table 2 with a dynamic approach. To
make the process simple, we assume each VM service rate is 1.

Table 2 Parameters of cloud simulation

The number of servers 8
Service rates of servers µ = 1, 2, . . . 8
Initial Server Setups µ = 1, 2, 3 for C2 and µ = 4,. . . 8 for C1

Arrival rates of C1 and C2 λ1 = {i}, λ2 = {2i}, where i = 1,2, . . . ,10
Used priority levels Ψ1 = {1.5, 5}, Ψ2 = {1}
Queue Lengths of Q1 and Q2 30
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The values of the selected parameters are given in Table 2. The values of the pa-
rameters are selected to observe behaviors of the system when the system is under
light and heavy traffic flows of IoT requests. Arrival rates of C1 and C2 depend on i
to keep track the relation of two arrival rates. We assume thatC1 represents the higher
priority request; the priority of this class is higher because of premium membership
of users or application types. In order to observe priority level effects on the system
performance, two priority levels of C1 are used. On the other hand, C2 represents the
second priory type requests because of standard users or low priority applications.
Therefore, the arrival rate of C1 is lower than C2 requests. This approach well repre-
sents the real life scenario as it is seen in similar type behaviors in commercial cloud
systems [40]. The values of the service rates in Table 2 represent the only service
time of a request in the servers. The values of service rates are selected to presents
heterogeneous server environment [38]. Creation and preparation times of VMs are
ignored because IoT type requests are generally software type requests and do not
experience delays due to creation or preparation of VMs. Buffer lengths are kept
small [41], similar to real system to reduce respond time.

7 Results

In this section, the derived formulas in Section 5 are verified with an extensive simula-
tion and the performances of the proposed DDSS and h-DDSS methods are evaluated
by comparing with existing DSS method.

7.1 Validation of Analytical Expressions

In this subsection, the analytical and simulation results of h-DDSS are compared to
evaluate the accuracy of the approximation of the performance metrics which are
derived in Section 5 for FSF allocation.

7.1.1 Average occupancy and delay

Figs. 8 and 9 show the average C1 and C2 occupancies and delays of h-DDSS ob-
tained through the simulation and analytical model. The simulation and analytical
occupancy results are closely matched. Although the delay results of the simulation
are higher than the analytical ones, they have followed a similar pattern. The reason
is that the scheduling algorithm dynamically arranges the number of assigned servers
for C1 and C2 and does not allow newly assigned servers to drop the requests in ser-
vice. Such dynamic behavior cannot analytically be formulated. Therefore, the delay
results of the simulation are generally a little higher than the analytical delay results.
The occupancy and delay results of C1 and C2 are almost zero until i ≤ 6 (λ1 ≤ 6
and λ2 ≤ 12). However, after i > 6, the delay and occupancy are sharply increasing
until reaching to maximum occupancy value (= 30 because queue size is 30).
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Fig. 8 Average C1 and C2 occupancies of h-
DDSS (FSF allocation) obtained through the simu-
lation and analytical model.
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Fig. 9 AverageC1 andC2 delays of h-DDSS (FSF
allocation) obtained through the simulation and an-
alytical model.

7.1.2 Drop rate and throughput

Figs. 10 and 11 show C1 and C2 drop rates and throughput of h-DDSS obtained
through the simulation and analytical model. The analytical results of the throughput
and drop rates also matched with the simulation ones. C1 throughput is lower than
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Fig. 10 C1 and C2 throughput of h-DDSS (FSF
allocation) obtained through the simulation and an-
alytical model.
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Fig. 11 C1 and C2 drop rates of h-DDSS (FSF al-
location) obtained through the simulation and ana-
lytical model.

C2 throughput because the arrival rate of C1 (λ1) is lower than the arrival rate of C2

(λ2). However, after i = 7 (7 ≤ λ1 ≤ 10 and 14 ≤ λ2 ≤ 20), because of the priority
levels of C1 (Ψ1 = 5) and C2 (Ψ2 = 1), C2 throughput is stable, and C1 throughput
is continuously increasing. This means that the assigned servers to C1 and C2 are
enough to serve the incoming C1 traffic, but the assigned servers are not enough for
C2 traffic after i = 7.

C1 and C2 drop rates are close to zero while i ≤ 7 (λ1 ≤ 7 and λ2 ≤ 14). On the
other hand, C2 drop rate is higher than C1 drop rate after i ≥ 7 (7 ≤ λ1 ≤ 10 and
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14 ≤ λ2 ≤ 20) because the number of the assigned servers for C2 is not enough to
serve C2 requests.

As shown in Figs. 8, 9, 10, and 11, the obtained analytical and simulation results
closely match and follow a similar pattern, thereby validating our analytical approx-
imations. Therefore, the obtained analytical expressions can be used to estimate the
performance of a large set of servers in heterogeneous cloud systems and heavy traffic
flows of IoT requests approximately.

7.2 Performances of Classes in DSS, DDSS and h-DDSS

In this subsection, the performance metrics, occupancy, throughput, and utilization,
of DSS, DDSS, and upper (FSF) and lower (SSF) bounds of h-DDSS are presented.
Note that we sometimes use h-DDSS or upper and lower bounds terms instead of
FSF and SSF in the rest of the paper. Average delay is not given because average
delay and occupancy follow similar patterns for all methods. Moreover, confidential
intervals because of realization results from different simulation runs are not given.
The reason is that the packet arrivals follow Poisson Distribution; thus, the differ-
ences between the obtained results from the different realizations are insignificant (it
means the variation is insignificant). To avoid complex presentation of the figures,
the confidential intervals are not presented in the figures.

DSS and DDSS results are obtained by averaging service rates of heterogeneous
servers while keeping every other parameters similar because of homogeneous server
assumption of DSS and DDSS. For example, if the total service rate of eight hetero-
geneous servers is equal to 40, the average service rate of eight homogeneous servers
is five. Therefore, each server rate of homogeneous servers is five. Moreover, we
also present the effects of priority levels of classes on the performance of the cloud
systems by keeping the priority level ofC2 fixed at 1 (Ψ2 = 1) while changing the pri-
ority level of C1 as 5 and 1.5 (Ψ1 as 5 and 1.5). Therefore, the impacts of the priority
levels of the classes on the performance of DSS, DDSS and h-DDSS are obtained.

7.2.1 Average class occupancy

Figs. 12 and 13 show the average C1 and C2 occupancies of DSS, DDSS and h-
DDSS (upper and lower bounds) when Ψ1 = 5 and Ψ2 = 1. From Figs. 12 and 13,
the impacts of the arrival rates on C1 and C2 occupancies are observed as follows: C1

andC2 occupancies are almost zero until i = 5 (λ1 ≤ 5 and λ2 ≤ 10) because of light
traffic flows. However, continuously rising arrival rates of C1 and C2 (5 ≤ λ1 ≤ 10
and 14 ≤ λ2 ≤ 20) leads sharp increases in C2 occupancies and slight changes in C1

occupancies because the priority level of C2 (Ψ2 = 1) is lower than the priority level
of C1 (Ψ1 = 5).

From Figs. 12 and 13, the effects of the arrival rates on the occupancies of DSS,
DDSS and h-DDSS are also observed as follows: The occupancies of DSS, DDSS,
FSF and SSF are equal and close to zero when i ≤ 5 for both C1 and C2 because all
scheduling algorithms well handle the light traffic flows. Therefore, the differences



Scheduling Internet of Things Applications in Cloud Computing 21

1 2 3 4 5 6 7 8 9 10
i

0.0

0.2

0.4

0.6

0.8

1.0

1.2

A
ve

ra
ge

oc
cu

pa
nc

y
(r

qs
t)

Ψ1 = 5 Ψ2 = 1

C1 (FSF)
C1 (SSF)
C1 (DSS)
C1 (DDSS)

Fig. 12 Average C1 occupancies of DSS, DDSS
and h-DDSS (Ψ1 = 5).
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Fig. 13 Average C2 occupancies of DSS, DDSS
and h-DDSS (Ψ1 = 5).

between scheduling algorithms are not significant. However, continuously rising ar-
rival rates ofC1 andC2 shows that the occupancies of DSS and DDSS (homogeneity)
are equal, and the occupancies of upper (FSF) and lower (SSF) of h-DDSS (hetero-
geneity) are very close for both C1 and C2 (when Ψ1 = 5 and Ψ2 = 1). It is worth
mentioning that after i = 5, C1 occupancies of h-DDSS are up to 2 to 3 times higher
than C1 occupancies of DSS and DDSS, and it is opposite for C2.
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Fig. 14 Average C1 occupancies of DSS, DDSS
and h-DDSS (Ψ1 = 1.5).
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Fig. 15 Average C2 occupancies of DSS, DDSS
and h-DDSS (Ψ1 = 1.5).

In Figs. 14 and 15, we change the priority level of C1 (Ψ1) from 5 to 1.5 while
keeping other parameters same to observe the effects of priority levels on the oc-
cupancies. The occupancy of DSS is not changed by the priority levels because DSS
does not take into account the priority levels while assigning servers. However, DDSS
and h-DDSS dynamically arrange servers by using priority levels. Therefore, as ob-
served from the occupancy figures, when the priority level of C1 is decreased, C1

occupancies of DDSS and h-DDSS are increasing but C2 occupancies of DDSS and
h-DDSS are reduced. It is important to note that the changes in the priority levels
affect h-DDSS occupancy more than DDSS occupancy.
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7.2.2 Throughput

Figs. 16 and 17 show C1 and C2 throughput of DSS, DDSS and h-DDSS when Ψ1 =
5 and Ψ2 = 1. C1 throughput of all cases is same because arrivals of C1 traffic
(λ1 = i = 1, . . . 10) are completely served. Moreover, C2 throughput is also same
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Fig. 16 C1 throughput of DSS, DDSS and h-
DDSS (Ψ1 = 5).
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Fig. 17 C2 throughput of DSS, DDSS and h-
DDSS (Ψ1 = 5).

until i = 7 (λ2 ≤ 14) for all cases since the assigned number of servers is enough to
serve the C2 traffic up to i = 7. However, after i = 7 (14 ≤ λ2 ≤ 20), C2 throughput
reaches maximum possible throughput level and cannot go higher because of the
service rate limitations of the assigned servers. As observed from Fig. 17, when the
system is under heavy traffic flows, the upper and lower bounds of C2 throughput of
h-DDSS are slightly higher than C2 throughput of DSS and DDSS because h-DDSS
assigns more servers for C2 traffic.
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Fig. 18 C1 throughput of DSS, DDSS and h-
DDSS (Ψ1 = 1.5).
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Fig. 19 C2 throughput of DSS, DDSS and h-
DDSS (Ψ1 = 1.5).

In Figs. 18 and 19, we change the priority level of C1 (Ψ1) from 5 to 1.5 while
keeping other parameters same to observe the priority levels effects on the through-
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put. The throughput of DSS is not affected because of non-dynamic server assignment
policy of DSS. However, when the priority level of C1 is decreased, C2 throughput
of DDSS and h-DDSS are increasing after i = 7 because of dynamic server assign-
ment policies of DDSS and h-DDSS. In addition, although C2 throughput of h-DDSS
is still higher than C2 throughput of DDSS, C2 throughput of DDSS is improved
more than C2 throughput of h-DDSS. It is significantly important to note that DDSS
and h-DDSS notably increase C2 throughput without decreasing C1 throughput af-
ter changing the priority level of C1. This shows that the performance in DDSS and
h-DDSS can be optimized by selecting priority levels of classes.

7.2.3 Utilization

Utilization is a performance metric which reflects the efficiency of server usage. Here,
utilization is computed as the ratio of the arrival rates of incoming class traffic to the
total service rates (of all the dedicated servers) for the same class. We are interested
in the impacts of the priority levels on utilizations of DSS, DDSS, and h-DDSS.
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Fig. 20 C1 utilization of DSS, DDSS and h-DDSS
(Ψ1 = 5).
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Fig. 21 C2 utilization of DDSS and h-DDSS
(Ψ1 = 5).

Figs. 20 and 21 show C1 and C2 utilizations of DSS, DDSS and h-DDSS when
Ψ1 = 5 and Ψ2 = 1. C1 utilizations of DSS and DDSS are equal and slightly lower
than C1 utilization of h-DDSS (FSF and SSF). However, C2 utilizations of DSS and
DDSS are larger than C2 utilization of h-DDSS. In addition, the gap between the
utilizations of DSS and DDSS, and the utilization of h-DDSS are getting higher for
both C1 and C2 utilizations while the arrival rates of C1 and C2 are increased.

In Figs. 22 and 23, we change the priority level of C1 (Ψ1) from 5 to 1.5 while
keeping other parameters same. As a result of the priority level alteration, there are
two important changes. First, utilizations of DSS and DDSS are not equal anymore,
and C1 utilization of DDSS is higher than C1 utilization of DSS, and C2 utilization
of DDSS is lower than C2 utilization of DSS. Second, the gap between utilization
of DSS, DDSS and h-DDSS is becoming much larger. It is worth mentioning that
reducing C1 priority level increases C1 utilization and decreases C2 utilizations of
DDSS and h-DDSS.
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Fig. 22 C1 utilization for DSS, DDSS and h-
DDSS (Ψ1 = 1.5).
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Fig. 23 C2 utilization for DDSS and h-DDSS
(Ψ1 = 1.5).

7.3 Summary of Results

Based on the results, we make the following observations: (i) Priority levels do not
significantly affect the performances of homogeneous and heterogeneous systems
when the system is under light traffic flows. (ii) The throughput of the homogeneous
server systems is affected more than the throughput of the heterogeneous server sys-
tems by priority levels when the system is under heavy traffic flows. (iii) Although
the upper (FSF) and lower (SSF) bound performances of h-DDSS are same when the
system is under the pressure of IoT requests, FSF is generally better than SSF. (iv)
Heterogeneous systems can become more efficient than homogeneous systems by as-
signing proper priority levels to types of Internet of Things requests. (v) Importantly,
DDSS and h-DDSS increase the performance of the system up to 40% compared to
DSS.

8 Conclusion and Future Direction

In this paper, we have proposed a dynamic scheduling algorithm for cloud computing
by considering homogeneous and heterogeneous servers with priorities of Internet of
Things requests. Analytical expressions of the upper and lower bound performance
metrics for heterogeneous Dynamic Dedicated Server Scheduling are derived and
verified by an extensive simulation. The performances of homogeneous and hetero-
geneous cloud computing systems have been presented in terms of throughput, occu-
pancy, and utilization. Results show that the proposed scheduling algorithm increases
the performances of the homogeneous and heterogeneous systems up to 40%. The
results obtained in this paper will assist cloud service providers build efficient cloud
computing server scheduling algorithms which are adaptable to homogeneous and
heterogeneous server systems for different types of Internet of Things requests.

As a future work, the effects of heterogeneity level of servers and Internet of
Things requests on cloud computing performance will be investigated by using Gini
Index.
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