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Abstract—Vegetation management is a critical component of
railway maintenance, directly impacting operational safety, in-
frastructure longevity, and regulatory compliance. Overgrown
vegetation can obscure track visibility, interfere with inspection
routines, and degrade track conditions which posing risks to both
freight and passenger operations. This paper explores automated
vegetation detection within railroad environments using three
deep learning models: YOLOVS, U-Net, and DeepLabv3+. The
YOLOVS8 model was trained using both object detection bounding
boxes and instance segmentation masks on a domain-specific
dataset comprising around 500 railroad images captured under
real-world deployment conditions. In contrast, the semantic
segmentation models, U-Net and DeepLabv3+, were trained
on a broader dataset of more than 9,800 images representing
general vegetation contexts. Comparative analysis reveals that
DeepLabv3+ consistently outperforms the other models in ac-
curately identifying vegetation, demonstrating higher precision,
recall, and segmentation quality. These findings highlight the
effectiveness of semantic segmentation, particularly DeepLabv3+,
for detecting irregular, organic features such as vegetation in
complex railway settings.

Index Terms—Railroad, Vegetation, Machine Learning

I. INTRODUCTION

There are more than 140,000 miles of railroads in the United
States that support the transportation of approximately 1.5
billion tons of goods and 28.6 million passengers annually [1].
As a major economic driver, the railroad industry generated
$233.4 billion in 2023 alone [2]. In order to maintain consistent
operations, monitoring and regulating railroad defects that
could affect the safety and efficiency of railroad transportation
is one of the most important maintenance tasks.

One of the most important aspects of defect control is
the maintenance of overgrown vegetation along and within
the railroad. Not only does vegetation interfere with railroad
personnel’s track examination routines but it also contributes
to track deterioration and slippery rails [3]. According to U.S.
regulation [4], vegetation on railroad must be contained so
that it does not cause, obstruct visibility, and functioning of
the communication lines.

Traditionally, railroad inspection is conducted through visual
assessment by human safety inspectors either on site or through
video footage. However, such a process is labor intensive,
costly, and prone to human errors. As demonstrated by Nyberg
et al. [3], human assessments tend to be volatile and unreliable.

These are mainly due to raters having differing evaluation of
vegetation extent and condition, thus leading to non-uniform
and subjective conclusions.

The growing complexity of modern railroad networks, com-
bined with the advancement of technology, has driven the
railroad industry to develop Machine Learning (ML) systems
to supplement the inspection and maintenance process to
minimize errors and cost. Around 58% of papers published on
the usage of Artificial Intelligence (Al) in the railroad industry
focuses on the subdomain of Maintenance and Inspection [5].
However, while machine learning techniques for detecting
structural defects such as missing bolts, cracks, and track mis-
placement have been tested and applied, their applications in
detecting irregular, organic defects such as vegetation remains
less developed. Vegetation poses a unique problem for ML
models as their irregular shape, color, density, and size varies
based on the season and terrain. This irregularity demands
flexible ML models and a large, diverse dataset that is capable
of reflecting the variation in vegetation growth.

This paper aims to automate vegetation detection within
railroad tracks using three deep learning models: YOLOVS [6],
U-Net [7], and DeepLabv3+ [8].

The research objectives are as follows.

o Training a YOLOvVS8 model to identify vegetation within
railway tracks: The accuracy of two different versions of
the model, one trained on object detection bounding boxes
and one trained on segmentation masks, will be compared
and evaluated. Finally, binary rail masks produced by
YOLOVS8’s segmentation feature will be overlaid on the
original images to determine whether each vegetation
patch falls inside or outside of our region of interest
(ROD).

¢ Training U-Net and DeepLabv3+ models to identify veg-
etation in railroad tracks: To improve generalization, the
training dataset includes not only railroad images, but also
images from diverse environments containing vegetation
(e.g., cityscapes, roads, and earth maps). The resulting
binary masks are generated through semantic rather than
instance segmentation.

The key contributions of this paper are as follows.



o Training and deploying YOLOVS for object detection
and instance segmentation in comparison with semantic
segmentation models (U-Net and DeepLabv3+) to in-
crease accuracy and speed of railroad vegetation detection
in a domain where irregular, organic defects, such as
vegetation, remain underexplored.

o Creating a domain-specific, custom-annotated dataset for
vegetation detection on railroad with more around 500
railroad images grounded in real deployment conditions.
This specialized dataset will be compared with a dataset
of 3,857 images capturing vegetation in different environ-
ment not limited solely to the railroad.

The paper is organized as follows. Section II presents a
review of related work in the field. Section III outlines the deep
learning models employed in this study and describes the data
collection and training procedures. Section IV analyzes metrics
and results produced by trained deep learning models. Section
Section IV contains the conclusion and possible considerations
for future work.

II. LITERATURE REVIEW
A. Automating Vegetation Detection in Railroad

Light Detection and Ranging (LiDAR), a remote sensing
technology that can map out vegetation height and density,
operates by emitting laser pulses towards a target and calcu-
lating the precise distance based on the measured two-way
travel time of the pulse.

The data is recorded by either the Discrete Return LiDAR
System, which measures discrete data points at the peaks of
the waveform curve, or the full-waveform LiDAR system,
which captures the entire waveform of the returning pulse,
enabling it to make further variation among its targets, such as
distinguishing tree branches from leaves. The resulting clouds
of points are then projected as a 3D spatial map. In the field
of vegetation detection, LiDAR is most commonly used to
measure and quantify forest canopy [9].

LiDAR provides accurate estimates of vegetation height and
density without interference from hue, saturation, brightness,
or poor weather conditions. However, this technology is also
expensive to operate compared to camera-based solutions and
requires significant computational resources to process the
large volume of 3D data it generates.

Instead, this study approaches vegetation detection through
RGB images collected via a camera. This method is generally
more cost-effective, capable of capturing color and texture
useful for identifying vegetation types and conditions, and
is more intuitive for human operators to interpret without
specialized training or hardware.

B. Computer Vision

Min et al. [10] created a real-time computer vision system
for surface rail defects detection, which builds upon prior
research on evaluating the accuracy of surface defects detection
systems with the goal of minimizing computational burden.
The model uses a rapid target area location method based on

the H (Hue) value of color images, which demonstrates strong
adaptability to varying light conditions. The portable prototype
achieved a real-time detection speed of 2 m/s, with processing
times up to 245.61 ms per picture .

Xu et al. [11] built the AED-YOLO model, which is de-
signed to improve the detection accuracy of small-sized com-
ponents, such as fastener nuts and bracing wire, by integrating
Improved Bidirectional Feature Pyramid Network (Hor-Bi-
FPN) and Asymmetrically Effective Decoupled Head (AED-
Head). This model achieved a mean Average Precision (mAP)
of 93.5%, outperforming YOLOvV3 with an improvement of
1.8% and YOLOVS with an improvement of 2.3%.

Although You Only Look Once (YOLO) has been widely
applied in vegetation detection, limited research exists in its
application in railroad maintenance. Gautam et al. [12] utilized
YOLOVS on drone-acquired images to detect invasive Siam
weed in natural environments, reaching an F-1 score of 0.88.
Notably, their study also highlighted that the complexity of
YOLO models does not noticeably increase its performance.
This finding aligns with the research by Andrew et al. [13]. In
his work using YOLO to detect railroad cracks, YOLOVS and
YOLOVY had higher performance compared to most updated
versions such as YOLOv10x and YOLOv10n, with YOLOvVS
achieving an F-1 score of 0.92.

Kholiya et al. [14] built a YOLO model for automatic
plant detection and counting in agriculture based on a diverse
dataset in Roboflow. However, their research did not disclose
quantitative performance metrics such as F-1 and mAP scores
to reflect the effectiveness of such a method.

Gupta et al. [15] utilized machine vision to create binary
masks of vegetation and railroad tracks to identify the location
and size of vegetation patches. However, this model was not
evaluated quantitatively. Nyberg et al. [3] similarly applied
color segmentation in the HSV (Hue, Saturation, and Value)
space to calculate plant cover.

C. Existing Limitations

Despite the development of machine vision and machine
learning techniques in the detection and maintenance of rail-
roads, there remain limitations when it comes to vegetation
classification and identification. At present, the majority of
research in railroad Al focuses on structural defects such as
missing bolts, cracks, and faults. These structural defects are
relatively uniform in appearance compared to organic defects,
such as overgrown vegetation, which vary significantly based
on hue, density, and shape.

Furthermore, many of the current machine learning models,
including YOLO variants, require training on a large, diverse
dataset to optimize its performance. As Gautam et al. [12]
found, a model trained with 1,000 images is capable of
obtaining more reliable results. However, publicly available
vegetation datasets specific to the railroad context are ex-
tremely scarce. Many previously established ML models are
trained with agricultural or terrain-based images which may
fail to transfer their performance under real-world railroad-
related limitations such as debris, background clutter, and



varying lighting conditions. Early efforts, such as Gupta et
al.’s [15], which involved 35 images, may not reflect the full
needs of the machine model. Nyberg et al. [3] stated that
future works should expand upon this methodology of taking
pictures of track images manually, which this study seeks to
remedy through an automated video/image setup so that a large
quantity of diverse images may be automatically collected,
reducing the data collection burden.

III. METHODOLOGY
A. Deep Learning Models

1) YOLOvS: YOLO is a real-time object detection sys-
tem first introduced in 2015 by Redmon et al. [16].Before
the introduction of YOLO, the most commonly used object
detection models were two-stage detectors based on convo-
lutional neural networks (CNN), such as R-CNN and Fast
R-CNN. These detectors perform detection in two stages.
First, generating regions proposals using the Region Proposal
Network (RPN). Second, passing each proposed region to
additional CNN layers to perform classification and bounding
box regression. While this method is able to produce results
with high accuracy, its complexity requires a large amount
of computational resources and therefore struggles to meet
the demanded processing speed for real-time deployments.
On the other hand, single-stage detectors, such as YOLO,
combine both steps, streamlining the object detection process
by identifying class probabilities and bounding box coordinates
in a single pass over the inputted image.

YOLOV8 was selected for this research due to several key
considerations.

o Real-Time Detection Needs: The research on detecting
vegetation within railroads relies on analyzing frame-
based data where inference speed is critical. As a tested
and well-documented model, YOLO remains the fastest
and most reliable single-stage pipeline available.

o Proven accuracy within railroad defect detection: Prior
research and applications of YOLO on structural railroad
defects, such as cracks [13], has demonstrated high preci-
sion and recall. By building upon previously established
conclusions, this research seeks to compare whether the
model’s performance remains effective in irregular defects
such as vegetation.

o Comparing Object Detection vs. Segmentation: An ad-
ditional factor motivating the selection of YOLO is its
ability to perform both object detection and segmentation.
YOLO’s ability to support both functions within one
framework enables direct comparison of these approaches
on the same dataset, ensuring that the methodology
captures the strengths of each and determines the most
effective method for vegetation detection.

2) U-Net and DeepLabv3+: The original U-Net is a con-
volutional neural network designed for biomedical image seg-
mentation, featuring a symmetric U-shaped architecture with
an encoder that captures context and a decoder that restores
spatial resolution, connected by skip connections to preserve

fine details. Its key innovation is the skip connections, which
solved the loss of spatial information during downsampling,
enabling precise boundary segmentation.

DeepLabv3+ is a deep learning model for semantic seg-
mentation that focuses on understanding both the overall
context of an image and the fine details of object boundaries.
It uses atrous (dilated) convolutions to capture features at
multiple scales without reducing image resolution, and an
Atrous Spatial Pyramid Pooling (ASPP) module to combine
information from different receptive fields. To improve accu-
racy along edges, it includes a decoder module that refines
the segmentation map, making boundaries sharper and more
precise. Additionally, it applies depthwise separable convo-
lutions to reduce computational cost while maintaining high
performance.

The primary motivation for selecting U-Net and
DeepLabv3+ is to compare how different deep learning
models designed for semantic segmentation perform on the
same task alongside an instance segmentation model such as
YOLOVS. Furthermore, these models have different modern
and complex architectures. U-Net employs a symmetric
encoder-decoder structure with skip connections. DeepLabv3+
leverages atrous convolutions and multi-scale context
aggregation through ASPP and a decoder module. YOLOVS
for segmentation extends the YOLO architecture by predicting
both object bounding boxes and pixel-level masks in a single
forward pass. By comparing these architectures, the more
efficient one for vegetation detection can be identified for
further implementation.

B. Data Preparation

1) Railroad Vegetation Dataset: The hardware equipment is
attached to the vehicle at the site location and operates along
the rail at various speeds to collect data. For this dataset, the
model was trained on images collected at 5, 10, and 15 mph.
Data were recorded using a Dell Rugged laptop with a built-in
GPS.

The images used to train this model were captured by an
overhead Intel RealSense D435 camera at 640x480 resolution
(30 fps). The railway videos were recorded through the custom
GUI software and saved as video files.

The collected video footage was converted into PNG frames.
Using Roboflow, 200 images were manually annotated with
object detection bounding boxes and segmentation masks in
two categories: vegetation and railway. These annotations
were then used to train a Roboflow auto-annotation model to
streamline the labeling process. Around 500 images from field
footage were labeled twice using two different methods: object
detection bounding boxes and segmentation masks.

SAM was explored as an instance segmentation tool to
generate vegetation masks and convert them into bounding
boxes for automated labeling. However, SAM’s segmentation
masks struggled to distinguish vegetation from ballast, limiting
its effectiveness.
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Fig. 1.
(right).

Example of segmentation dataset (left) and object detection dataset

2) General Vegetation Dataset: Besides the original
dataset, five additional datasets forked from Roboflow are
used: cvr [17], Cityscapes-external-vl Computer Vision
Dataset [18], vegetation Computer Vision Dataset [19], veg-
etation Computer Vision Model [20], and Interval-Tree-
Mapillary_v4 Computer Vision Model [21]. These datasets
include images of vegetation from various environments, not
just railroads. The underlying motivation is that vegetation
shares common visual characteristics across environments,
generally appearing green and often having unclear bound-
aries. Therefore, when preparing the training dataset, it is not
necessary for the vegetation to be specific to railroads. Images
from various environment can be used. This approach can help
the model generalize better to diverse vegetation scenarios.

Image augmentation was applied to the combined dataset,
including:

o Resizing: 512x512 pixels

« Rotation: 90° clockwise, 90° counter-clockwise, and up-

side down

o Cropping: 0% minimum zoom, and 20% maximum zoom

o Noise: Up to 0.22% of pixels

The final dataset contains 9,865 images, with 9,012 images
(91%) used for training and 853 images (9%) for validation.
For the testing set, real captured images were used. Figure 2 il-
lustrates some example images along with their corresponding
masks.

C. Training

1) YOLOvS: To restrict vegetation detection to the railway
region of interest, a YOLOvI1 model was trained on 500
images containing railway bounding boxes.

The first YOLOv11 training attempt used 343 training im-
ages (69%), 40 validation images (8%), and 117 testing images
(23%), which produced inconsistent results. In the second
attempt, the dataset was split into 343 training images (69%)
and 157 validation images (31%), with testing applied on live
footage. This configuration yielded more accurate detections,
as shown in Figure 3.

The resulting railway segmentation masks are exported as
binary images for subsequent masking as shown in Figure 4.

Fig. 2. Examples of original images (top row) and their corresponding labeled
images (bottom row).

Fig. 3. YOLOv11 first attempt at training (left) vs YOLOv11 second attempt
at training with more validation images (right).

Applying this binary mask as part of the post-processing step
would be able to filter out predictions falling outside of the
RO, reducing false negatives.

Fig. 4. Binary Mask of Railway

Two variants of YOLOVS were trained. The first one is
based on the object detection bounding boxes dataset, while
the second one relies on the segmentation masks dataset.
The object detection variant (YOLOv8n) and the segmentation
variant of the model (YOLOv8n-seg) were used with pre-
trained weights initialized from the COCO dataset. Each of
the models was trained for 500 epochs with a batch size of 32
and an image resolution of 640x640. Adamax optimizer was
used with an initial learning rate of 0.01, cosine learning rate
scheduling disabled, and a warmup of around 2.66 epochs.
Default YOLOVS loss functions, which combine bounding
box regression, classification, and mask loss, were used. Early
stopping was applied with a patience of 100 epochs. For the
object detection model, early stopping occurred at epoch 149.
For the segmentation model, the AdamW optimizer with the
same parameters, and early stopping occurred at epoch 89.



Augmentations, such as mosaic and horizontal flip, were
enabled by default in YOLOVS, while custom augmentations
(hue, saturation, blur, and noise) were tested but removed due
to a decrease in the model’s performance.
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Fig. 5. Fitness vs Iteration graph as a result of hyperparameters tuning

An attempt to tune the models’ hyperparameters was un-
successful and proved to decrease the model’s performance.
As demonstrated in Figure 5, the fitness values fluctuate
significantly in the graph and there is no evident upward trend.
This signifies that tuning the hyperparameters has led to little
model improvement, or model is insensitive to hyperparame-
ters tuning.

2) U-Net: To train U-Net, BCEWithLogitsLoss was used
because it combines a sigmoid activation with binary cross-
entropy loss, which is well-suited for pixel-wise binary seg-
mentation tasks. Adam optimizer was employed with a learn-
ing rate of 1 x 107° and a weight decay of 1 x 107%. A
learning rate scheduler (Reduce LROnP lateau) was applied
to reduce the learning rate by a factor of 0.5 if the validation
loss did not improve for 5 epochs. Early stopping, monitoring
the vegetation class IoU, was also used with a patience of 10
epochs and a minimum delta of 0.001 to prevent overfitting.
The model was scheduled to train for 100 epochs, but training
stopped at epoch 43 due to early stopping, as the vegetation
class IoU did not improve. Unlike YOLOVS, the training of
U-Net utilized a dataset containing vegetation from various
environments.

3) DeepLabv3+: The same training parameters, including
the loss function, optimizer, learning rate scheduler, early
stopping, and number of epochs, that were used for U-Net were
also applied to train DeepLabv3+. Unlike U-Net, DeepLabv3+
was not stopped early by the early stopping criterion and
was trained using general vegetation dataset. Furthermore,
the DeepLabv3+ model uses an EfficientNetV2_S_ImageNet
backbone, meaning that the backbone is an EfficientNetV2_S
model pre-trained on the ImageNet dataset. With this back-
bone, the model does not have to learn low-level feature
representations from scratch, allowing it to focus on learning
high-level features specific to vegetation segmentation.

IV. RESULTS AND DISCUSSION

A. YOLOvS
TABLE I
YOLOV8 BEST SCORE COMPARISON FOR OBJECT DETECTION AND
SEGMENTATION

Metric Object Detection | Segmentation
F1 0.69 0.72
Precision 1.00 1.00
Recall 0.88 0.86
mAP@0.5 0.68 0.73

Evaluation metrics for object detection and segmentation are
summarized in Table I. Although the F-1 score does not differ
significantly between the models, the segmentation model
achieved its optimal Fl-score of 0.72 at a higher confidence
threshold than the detection model. While this difference does
not inherently signify superior performance, it suggests that the
segmentation model’s predictions tended to have higher confi-
dence. Notably, the precision values for both models reached
a perfect score of 1.000, reflecting a high level of accuracy
in positive predictions. The object detection model achieved a
recall of 0.88, slightly higher than the segmentation model’s
0.86. This indicates that the object detection model is slightly
more sensitive in identifying all vegetation patches, though
this may also produce more false positives. Furthermore, the
YOLOVS segmentation model achieved a higher mAP@0.5
value of 0.73 compared to the object detection model value
of 0.68, indicating an improved overall accuracy in detecting
vegetation.

Qualitative evaluation of model outputs as demonstrated in
Figure 6 showed that the segmentation model more accurately
masked shapes, while the object detection model tended to
have bounding boxes overlap and fail to capture some instances
of vegetation.

Fig. 6. Examples of YOLO’s result bounding boxes (top row) and result
segmentation masks (bottom row).

Overall, these results indicate that the YOLOvV8 segmenta-
tion model achieves higher accuracy at a higher confidence
threshold, with fewer false positives, though potentially more
false negatives. This makes it generally more reliable than
the object detection model. This suggests that segmentation
works better for an irregular, organic defect such as vegetation
compared to object detection, which has previously proved to
show stronger performance on structural defects like missing



bolts and cracks. However, the YOLOvV8 segmentation model
still produced less than desirable F-1 score and accuracy. This
suggests that YOLO’s extended instance segmentation feature
may not be advanced enough to accurately detect vegetation
defects. Nevertheless, having established that segmentation
outperforms object detection in terms of vegetation detection,
we can move on to experiments with other semantic segmen-
tation models such as U-Net and DeepLabv3+.

B. U-Net

The U-Net model stopped early at epoch 43, as the vegeta-
tion IoU did not improve for 10 consecutive epochs. Table II
presents the training results of U-Net for vegetation class. The
model achieved a validation loss of 0.1059, indicating that its
predictions closely match the ground truth masks. The IoU of
0.8096 demonstrates a strong overlap between predicted and
true vegetation regions, reflecting good segmentation perfor-
mance. A high precision of 0.9144 indicates relatively few
false positive predictions, while a recall of 0.8760 shows that
most actual vegetation pixels are correctly detected. Overall,
these results suggest that U-Net performs well in accurately
identifying vegetation, effectively balancing false positives and
false negatives. Figure 7 illustrates U-Net’s validation result
masks.

TABLE II
VALIDATION METRICS FOR U-NET
Metric Value
Validation Loss 0.1059
Validation ToU 0.8096
Validation Precision | 0.9144
Validation Recall 0.8760
Validation F1 0.8948

Fig. 7.
masks(bottom row).

Examples of U-Net’s validation images (top row) and result

Although the validation results look promising, the testing
results are less accurate, as shown in Figure 8. U-Net some-
times misclassified ballast and tree logs as vegetation. This
shows that the model, while performing well on the validation
set, has limitations in generalizing to real-world images with
more complex backgrounds.

Fig. 8. Examples of U-Net’s test images (top row) and result masks(bottom
Trow).

C. DeepLabv3+

Table IIT shows the results of the DeepLabv3+ validation
for the vegetation class. The DeepLabv3+ model achieved
a validation loss of 0.0534, indicating that its predictions
closely match the ground truth masks. A high IoU of 0.9124
demonstrates excellent overlap between predicted and true veg-
etation regions, reflecting strong segmentation performance.
The model also exhibits high precision (0.9570) and recall
(0.9510), indicating it correctly identifies most vegetation
pixels while producing few false positives. The F1 score of
0.9540 confirms a strong balance between precision and recall.
Figure 9 illustrates the validation result masks of DeepLabv3+.
This strong performance persists on unseen testing images,
as shown in Figure 10. Unlike U-Net, DeepLabv3+ is able
to differentiate vegetation from ballast and tree logs. This
improved performance can be attributed to the more complex
model structure, with a model size of 346.5 MB, compared to
118.5 MB for U-Net, and the use of a pre-trained backbone.

TABLE III

VALIDATION METRICS FOR DEEPLABV3+
Metric Value
Validation Loss 0.0534
Validation ToU 0.9124
Validation Precision | 0.9570
Validation Recall 0.9510
Validation F1 0.9540

V. CONCLUSION

Vegetation control is vital for railway safety and infras-
tructure integrity. This study compared three deep learning
approaches; YOLOvVS, U-Net, and DeepLabv3+, for detecting
overgrown vegetation alongside railroad tracks. DeepLabv3+
consistently achieved the highest precision, recall, and seg-
mentation quality, proving most effective in complex rail envi-
ronments. The YOLOVS instance segmentation model outper-
formed its object detection counterpart, achieving a higher F1
score, mAP@0.5, and more stable precision—recall behavior,



Fig. 9. Examples of DeepLabv3+’s validation images (top row) and result
masks(bottom row).

Fig. 10.
masks(bottom row).

Examples of DeepLabv3+’s test images (top row) and result

which underscores segmentation’s advantage for irregular, or-
ganic defects. Nevertheless, YOLO’s overall performance still
falls below desired thresholds. Future efforts should explore
the integration of binary railway masks to focus detection on
track areas and potentially boost accuracy. To address dataset
limitations, additional real-world railroad data will be col-
lected to improve model generalization and performance. Real-
world deployment challenges, including variability in lighting,
weather, and track environments, will be verified through
manual validation to assess model performance under different
harsh deployment conditions. Finally, evaluating deeper and
more advanced U-Net variants such as attention-augmented or
residual-connected architectures, could close the performance
gap with DeepLabv3+ on unseen testing images.
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