
Comparing Object Detection, Instance Segmentation,
and Semantic Segmentation for Automated
Vegetation Detection in Railroad Systems

Mingyan Liu∗, Van Trung Le†, Hwapyeong Song†, Advay Chandramouli‡, Husnu S. Narman†, Ammar Alzarrad†
∗ Smith College, iliu32@smith.edu

† Marshall University, {le57, song24, narman, alzarrad}@marshall.edu
‡The University of Texas at Dallas, advay.chandramouli@utdallas.edu

Abstract—Vegetation management is a critical component of
railway maintenance, directly impacting operational safety, in-
frastructure longevity, and regulatory compliance. Overgrown
vegetation can obscure track visibility, interfere with inspection
routines, and degrade track conditions which posing risks to both
freight and passenger operations. This paper explores automated
vegetation detection within railroad environments using three
deep learning models: YOLOv8, U-Net, and DeepLabv3+. The
YOLOv8 model was trained using both object detection bounding
boxes and instance segmentation masks on a domain-specific
dataset comprising around 500 railroad images captured under
real-world deployment conditions. In contrast, the semantic
segmentation models, U-Net and DeepLabv3+, were trained
on a broader dataset of more than 9,800 images representing
general vegetation contexts. Comparative analysis reveals that
DeepLabv3+ consistently outperforms the other models in ac-
curately identifying vegetation, demonstrating higher precision,
recall, and segmentation quality. These findings highlight the
effectiveness of semantic segmentation, particularly DeepLabv3+,
for detecting irregular, organic features such as vegetation in
complex railway settings.

Index Terms—Railroad, Vegetation, Machine Learning

I. INTRODUCTION

There are more than 140,000 miles of railroads in the United

States that support the transportation of approximately 1.5

billion tons of goods and 28.6 million passengers annually [1].

As a major economic driver, the railroad industry generated

$233.4 billion in 2023 alone [2]. In order to maintain consistent

operations, monitoring and regulating railroad defects that

could affect the safety and efficiency of railroad transportation

is one of the most important maintenance tasks.

One of the most important aspects of defect control is

the maintenance of overgrown vegetation along and within

the railroad. Not only does vegetation interfere with railroad

personnel’s track examination routines but it also contributes

to track deterioration and slippery rails [3]. According to U.S.

regulation [4], vegetation on railroad must be contained so

that it does not cause, obstruct visibility, and functioning of

the communication lines.

Traditionally, railroad inspection is conducted through visual

assessment by human safety inspectors either on site or through

video footage. However, such a process is labor intensive,

costly, and prone to human errors. As demonstrated by Nyberg

et al. [3], human assessments tend to be volatile and unreliable.

These are mainly due to raters having differing evaluation of

vegetation extent and condition, thus leading to non-uniform

and subjective conclusions.

The growing complexity of modern railroad networks, com-

bined with the advancement of technology, has driven the

railroad industry to develop Machine Learning (ML) systems

to supplement the inspection and maintenance process to

minimize errors and cost. Around 58% of papers published on

the usage of Artificial Intelligence (AI) in the railroad industry

focuses on the subdomain of Maintenance and Inspection [5].

However, while machine learning techniques for detecting

structural defects such as missing bolts, cracks, and track mis-

placement have been tested and applied, their applications in

detecting irregular, organic defects such as vegetation remains

less developed. Vegetation poses a unique problem for ML

models as their irregular shape, color, density, and size varies

based on the season and terrain. This irregularity demands

flexible ML models and a large, diverse dataset that is capable

of reflecting the variation in vegetation growth.

This paper aims to automate vegetation detection within

railroad tracks using three deep learning models: YOLOv8 [6],

U-Net [7], and DeepLabv3+ [8].

The research objectives are as follows.

• Training a YOLOv8 model to identify vegetation within

railway tracks: The accuracy of two different versions of

the model, one trained on object detection bounding boxes

and one trained on segmentation masks, will be compared

and evaluated. Finally, binary rail masks produced by

YOLOv8’s segmentation feature will be overlaid on the

original images to determine whether each vegetation

patch falls inside or outside of our region of interest

(ROI).

• Training U-Net and DeepLabv3+ models to identify veg-

etation in railroad tracks: To improve generalization, the

training dataset includes not only railroad images, but also

images from diverse environments containing vegetation

(e.g., cityscapes, roads, and earth maps). The resulting

binary masks are generated through semantic rather than

instance segmentation.

The key contributions of this paper are as follows.

• Training and deploying YOLOv8 for object detection

and instance segmentation in comparison with semantic

segmentation models (U-Net and DeepLabv3+) to in-

crease accuracy and speed of railroad vegetation detection

in a domain where irregular, organic defects, such as

vegetation, remain underexplored.

• Creating a domain-specific, custom-annotated dataset for

vegetation detection on railroad with more around 500

railroad images grounded in real deployment conditions.

This specialized dataset will be compared with a dataset

of 3,857 images capturing vegetation in different environ-

ment not limited solely to the railroad.

The paper is organized as follows. Section II presents a

review of related work in the field. Section III outlines the deep

learning models employed in this study and describes the data

collection and training procedures. Section IV analyzes metrics

and results produced by trained deep learning models. Section

Section IV contains the conclusion and possible considerations

for future work.

II. LITERATURE REVIEW

A. Automating Vegetation Detection in Railroad

Light Detection and Ranging (LiDAR), a remote sensing

technology that can map out vegetation height and density,

operates by emitting laser pulses towards a target and calcu-

lating the precise distance based on the measured two-way

travel time of the pulse.

The data is recorded by either the Discrete Return LiDAR

System, which measures discrete data points at the peaks of

the waveform curve, or the full-waveform LiDAR system,

which captures the entire waveform of the returning pulse,

enabling it to make further variation among its targets, such as

distinguishing tree branches from leaves. The resulting clouds

of points are then projected as a 3D spatial map. In the field

of vegetation detection, LiDAR is most commonly used to

measure and quantify forest canopy [9].

LiDAR provides accurate estimates of vegetation height and

density without interference from hue, saturation, brightness,

or poor weather conditions. However, this technology is also

expensive to operate compared to camera-based solutions and

requires significant computational resources to process the

large volume of 3D data it generates.

Instead, this study approaches vegetation detection through

RGB images collected via a camera. This method is generally

more cost-effective, capable of capturing color and texture

useful for identifying vegetation types and conditions, and

is more intuitive for human operators to interpret without

specialized training or hardware.

B. Computer Vision

Min et al. [10] created a real-time computer vision system

for surface rail defects detection, which builds upon prior

research on evaluating the accuracy of surface defects detection

systems with the goal of minimizing computational burden.

The model uses a rapid target area location method based on

the H (Hue) value of color images, which demonstrates strong

adaptability to varying light conditions. The portable prototype

achieved a real-time detection speed of 2 m/s, with processing

times up to 245.61 ms per picture .
Xu et al. [11] built the AED-YOLO model, which is de-

signed to improve the detection accuracy of small-sized com-

ponents, such as fastener nuts and bracing wire, by integrating

Improved Bidirectional Feature Pyramid Network (Hor-Bi-

FPN) and Asymmetrically Effective Decoupled Head (AED-

Head). This model achieved a mean Average Precision (mAP)

of 93.5%, outperforming YOLOv3 with an improvement of

1.8% and YOLOv5 with an improvement of 2.3%.
Although You Only Look Once (YOLO) has been widely

applied in vegetation detection, limited research exists in its

application in railroad maintenance. Gautam et al. [12] utilized

YOLOv5 on drone-acquired images to detect invasive Siam

weed in natural environments, reaching an F-1 score of 0.88.

Notably, their study also highlighted that the complexity of

YOLO models does not noticeably increase its performance.

This finding aligns with the research by Andrew et al. [13]. In

his work using YOLO to detect railroad cracks, YOLOv5 and

YOLOv9 had higher performance compared to most updated

versions such as YOLOv10x and YOLOv10n, with YOLOv5

achieving an F-1 score of 0.92.
Kholiya et al. [14] built a YOLO model for automatic

plant detection and counting in agriculture based on a diverse

dataset in Roboflow. However, their research did not disclose

quantitative performance metrics such as F-1 and mAP scores

to reflect the effectiveness of such a method.
Gupta et al. [15] utilized machine vision to create binary

masks of vegetation and railroad tracks to identify the location

and size of vegetation patches. However, this model was not

evaluated quantitatively. Nyberg et al. [3] similarly applied

color segmentation in the HSV (Hue, Saturation, and Value)

space to calculate plant cover.

C. Existing Limitations
Despite the development of machine vision and machine

learning techniques in the detection and maintenance of rail-

roads, there remain limitations when it comes to vegetation

classification and identification. At present, the majority of

research in railroad AI focuses on structural defects such as

missing bolts, cracks, and faults. These structural defects are

relatively uniform in appearance compared to organic defects,

such as overgrown vegetation, which vary significantly based

on hue, density, and shape.
Furthermore, many of the current machine learning models,

including YOLO variants, require training on a large, diverse

dataset to optimize its performance. As Gautam et al. [12]

found, a model trained with 1,000 images is capable of

obtaining more reliable results. However, publicly available

vegetation datasets specific to the railroad context are ex-

tremely scarce. Many previously established ML models are

trained with agricultural or terrain-based images which may

fail to transfer their performance under real-world railroad-

related limitations such as debris, background clutter, and

varying lighting conditions. Early efforts, such as Gupta et

al.’s [15], which involved 35 images, may not reflect the full

needs of the machine model. Nyberg et al. [3] stated that

future works should expand upon this methodology of taking

pictures of track images manually, which this study seeks to

remedy through an automated video/image setup so that a large

quantity of diverse images may be automatically collected,

reducing the data collection burden.

III. METHODOLOGY

A. Deep Learning Models

1) YOLOv8: YOLO is a real-time object detection sys-

tem first introduced in 2015 by Redmon et al. [16].Before

the introduction of YOLO, the most commonly used object

detection models were two-stage detectors based on convo-

lutional neural networks (CNN), such as R-CNN and Fast

R-CNN. These detectors perform detection in two stages.

First, generating regions proposals using the Region Proposal

Network (RPN). Second, passing each proposed region to

additional CNN layers to perform classification and bounding

box regression. While this method is able to produce results

with high accuracy, its complexity requires a large amount

of computational resources and therefore struggles to meet

the demanded processing speed for real-time deployments.

On the other hand, single-stage detectors, such as YOLO,

combine both steps, streamlining the object detection process

by identifying class probabilities and bounding box coordinates

in a single pass over the inputted image.

YOLOv8 was selected for this research due to several key

considerations.

• Real-Time Detection Needs: The research on detecting

vegetation within railroads relies on analyzing frame-

based data where inference speed is critical. As a tested

and well-documented model, YOLO remains the fastest

and most reliable single-stage pipeline available.

• Proven accuracy within railroad defect detection: Prior

research and applications of YOLO on structural railroad

defects, such as cracks [13], has demonstrated high preci-

sion and recall. By building upon previously established

conclusions, this research seeks to compare whether the

model’s performance remains effective in irregular defects

such as vegetation.

• Comparing Object Detection vs. Segmentation: An ad-

ditional factor motivating the selection of YOLO is its

ability to perform both object detection and segmentation.

YOLO’s ability to support both functions within one

framework enables direct comparison of these approaches

on the same dataset, ensuring that the methodology

captures the strengths of each and determines the most

effective method for vegetation detection.

2) U-Net and DeepLabv3+: The original U-Net is a con-

volutional neural network designed for biomedical image seg-

mentation, featuring a symmetric U-shaped architecture with

an encoder that captures context and a decoder that restores

spatial resolution, connected by skip connections to preserve

fine details. Its key innovation is the skip connections, which

solved the loss of spatial information during downsampling,

enabling precise boundary segmentation.

DeepLabv3+ is a deep learning model for semantic seg-

mentation that focuses on understanding both the overall

context of an image and the fine details of object boundaries.

It uses atrous (dilated) convolutions to capture features at

multiple scales without reducing image resolution, and an

Atrous Spatial Pyramid Pooling (ASPP) module to combine

information from different receptive fields. To improve accu-

racy along edges, it includes a decoder module that refines

the segmentation map, making boundaries sharper and more

precise. Additionally, it applies depthwise separable convo-

lutions to reduce computational cost while maintaining high

performance.

The primary motivation for selecting U-Net and

DeepLabv3+ is to compare how different deep learning

models designed for semantic segmentation perform on the

same task alongside an instance segmentation model such as

YOLOv8. Furthermore, these models have different modern

and complex architectures. U-Net employs a symmetric

encoder-decoder structure with skip connections. DeepLabv3+

leverages atrous convolutions and multi-scale context

aggregation through ASPP and a decoder module. YOLOv8

for segmentation extends the YOLO architecture by predicting

both object bounding boxes and pixel-level masks in a single

forward pass. By comparing these architectures, the more

efficient one for vegetation detection can be identified for

further implementation.

B. Data Preparation

1) Railroad Vegetation Dataset: The hardware equipment is

attached to the vehicle at the site location and operates along

the rail at various speeds to collect data. For this dataset, the

model was trained on images collected at 5, 10, and 15 mph.

Data were recorded using a Dell Rugged laptop with a built-in

GPS.

The images used to train this model were captured by an

overhead Intel RealSense D435 camera at 640×480 resolution

(30 fps). The railway videos were recorded through the custom

GUI software and saved as video files.

The collected video footage was converted into PNG frames.

Using Roboflow, 200 images were manually annotated with

object detection bounding boxes and segmentation masks in

two categories: vegetation and railway. These annotations

were then used to train a Roboflow auto-annotation model to

streamline the labeling process. Around 500 images from field

footage were labeled twice using two different methods: object

detection bounding boxes and segmentation masks.

SAM was explored as an instance segmentation tool to

generate vegetation masks and convert them into bounding

boxes for automated labeling. However, SAM’s segmentation

masks struggled to distinguish vegetation from ballast, limiting

its effectiveness.

Fig. 1. Example of segmentation dataset (left) and object detection dataset
(right).

2) General Vegetation Dataset: Besides the original

dataset, five additional datasets forked from Roboflow are

used: cvr [17], Cityscapes-external-v1 Computer Vision

Dataset [18], vegetation Computer Vision Dataset [19], veg-

etation Computer Vision Model [20], and Interval-Tree-

Mapillary v4 Computer Vision Model [21]. These datasets

include images of vegetation from various environments, not

just railroads. The underlying motivation is that vegetation

shares common visual characteristics across environments,

generally appearing green and often having unclear bound-

aries. Therefore, when preparing the training dataset, it is not

necessary for the vegetation to be specific to railroads. Images

from various environment can be used. This approach can help

the model generalize better to diverse vegetation scenarios.

Image augmentation was applied to the combined dataset,

including:

• Resizing: 512×512 pixels

• Rotation: 90◦ clockwise, 90◦ counter-clockwise, and up-

side down

• Cropping: 0% minimum zoom, and 20% maximum zoom

• Noise: Up to 0.22% of pixels

The final dataset contains 9,865 images, with 9,012 images

(91%) used for training and 853 images (9%) for validation.

For the testing set, real captured images were used. Figure 2 il-

lustrates some example images along with their corresponding

masks.

C. Training

1) YOLOv8: To restrict vegetation detection to the railway

region of interest, a YOLOv11 model was trained on 500

images containing railway bounding boxes.

The first YOLOv11 training attempt used 343 training im-

ages (69%), 40 validation images (8%), and 117 testing images

(23%), which produced inconsistent results. In the second

attempt, the dataset was split into 343 training images (69%)

and 157 validation images (31%), with testing applied on live

footage. This configuration yielded more accurate detections,

as shown in Figure 3.

The resulting railway segmentation masks are exported as

binary images for subsequent masking as shown in Figure 4.

Fig. 2. Examples of original images (top row) and their corresponding labeled
images (bottom row).

Fig. 3. YOLOv11 first attempt at training (left) vs YOLOv11 second attempt
at training with more validation images (right).

Applying this binary mask as part of the post-processing step

would be able to filter out predictions falling outside of the

ROI, reducing false negatives.

Fig. 4. Binary Mask of Railway

Two variants of YOLOv8 were trained. The first one is

based on the object detection bounding boxes dataset, while

the second one relies on the segmentation masks dataset.

The object detection variant (YOLOv8n) and the segmentation

variant of the model (YOLOv8n-seg) were used with pre-

trained weights initialized from the COCO dataset. Each of

the models was trained for 500 epochs with a batch size of 32

and an image resolution of 640×640. Adamax optimizer was

used with an initial learning rate of 0.01, cosine learning rate

scheduling disabled, and a warmup of around 2.66 epochs.

Default YOLOv8 loss functions, which combine bounding

box regression, classification, and mask loss, were used. Early

stopping was applied with a patience of 100 epochs. For the

object detection model, early stopping occurred at epoch 149.

For the segmentation model, the AdamW optimizer with the

same parameters, and early stopping occurred at epoch 89.

Augmentations, such as mosaic and horizontal flip, were

enabled by default in YOLOv8, while custom augmentations

(hue, saturation, blur, and noise) were tested but removed due

to a decrease in the model’s performance.

Fig. 5. Fitness vs Iteration graph as a result of hyperparameters tuning

An attempt to tune the models’ hyperparameters was un-

successful and proved to decrease the model’s performance.

As demonstrated in Figure 5, the fitness values fluctuate

significantly in the graph and there is no evident upward trend.

This signifies that tuning the hyperparameters has led to little

model improvement, or model is insensitive to hyperparame-

ters tuning.

2) U-Net: To train U-Net, BCEWithLogitsLoss was used

because it combines a sigmoid activation with binary cross-

entropy loss, which is well-suited for pixel-wise binary seg-

mentation tasks. Adam optimizer was employed with a learn-

ing rate of 1 × 10−5 and a weight decay of 1 × 10−8. A

learning rate scheduler (ReduceLROnPlateau) was applied

to reduce the learning rate by a factor of 0.5 if the validation

loss did not improve for 5 epochs. Early stopping, monitoring

the vegetation class IoU, was also used with a patience of 10

epochs and a minimum delta of 0.001 to prevent overfitting.

The model was scheduled to train for 100 epochs, but training

stopped at epoch 43 due to early stopping, as the vegetation

class IoU did not improve. Unlike YOLOv8, the training of

U-Net utilized a dataset containing vegetation from various

environments.

3) DeepLabv3+: The same training parameters, including

the loss function, optimizer, learning rate scheduler, early

stopping, and number of epochs, that were used for U-Net were

also applied to train DeepLabv3+. Unlike U-Net, DeepLabv3+

was not stopped early by the early stopping criterion and

was trained using general vegetation dataset. Furthermore,

the DeepLabv3+ model uses an EfficientNetV2 S ImageNet

backbone, meaning that the backbone is an EfficientNetV2 S

model pre-trained on the ImageNet dataset. With this back-

bone, the model does not have to learn low-level feature

representations from scratch, allowing it to focus on learning

high-level features specific to vegetation segmentation.

IV. RESULTS AND DISCUSSION

A. YOLOv8
TABLE I

YOLOV8 BEST SCORE COMPARISON FOR OBJECT DETECTION AND

SEGMENTATION

Metric Object Detection Segmentation
F1 0.69 0.72

Precision 1.00 1.00
Recall 0.88 0.86

mAP@0.5 0.68 0.73

Evaluation metrics for object detection and segmentation are

summarized in Table I. Although the F-1 score does not differ

significantly between the models, the segmentation model

achieved its optimal F1-score of 0.72 at a higher confidence

threshold than the detection model. While this difference does

not inherently signify superior performance, it suggests that the

segmentation model’s predictions tended to have higher confi-

dence. Notably, the precision values for both models reached

a perfect score of 1.000, reflecting a high level of accuracy

in positive predictions. The object detection model achieved a

recall of 0.88, slightly higher than the segmentation model’s

0.86. This indicates that the object detection model is slightly

more sensitive in identifying all vegetation patches, though

this may also produce more false positives. Furthermore, the

YOLOv8 segmentation model achieved a higher mAP@0.5

value of 0.73 compared to the object detection model value

of 0.68, indicating an improved overall accuracy in detecting

vegetation.

Qualitative evaluation of model outputs as demonstrated in

Figure 6 showed that the segmentation model more accurately

masked shapes, while the object detection model tended to

have bounding boxes overlap and fail to capture some instances

of vegetation.

Fig. 6. Examples of YOLO’s result bounding boxes (top row) and result
segmentation masks (bottom row).

Overall, these results indicate that the YOLOv8 segmenta-

tion model achieves higher accuracy at a higher confidence

threshold, with fewer false positives, though potentially more

false negatives. This makes it generally more reliable than

the object detection model. This suggests that segmentation

works better for an irregular, organic defect such as vegetation

compared to object detection, which has previously proved to

show stronger performance on structural defects like missing

bolts and cracks. However, the YOLOv8 segmentation model

still produced less than desirable F-1 score and accuracy. This

suggests that YOLO’s extended instance segmentation feature

may not be advanced enough to accurately detect vegetation

defects. Nevertheless, having established that segmentation

outperforms object detection in terms of vegetation detection,

we can move on to experiments with other semantic segmen-

tation models such as U-Net and DeepLabv3+.

B. U-Net

The U-Net model stopped early at epoch 43, as the vegeta-

tion IoU did not improve for 10 consecutive epochs. Table II

presents the training results of U-Net for vegetation class. The

model achieved a validation loss of 0.1059, indicating that its

predictions closely match the ground truth masks. The IoU of

0.8096 demonstrates a strong overlap between predicted and

true vegetation regions, reflecting good segmentation perfor-

mance. A high precision of 0.9144 indicates relatively few

false positive predictions, while a recall of 0.8760 shows that

most actual vegetation pixels are correctly detected. Overall,

these results suggest that U-Net performs well in accurately

identifying vegetation, effectively balancing false positives and

false negatives. Figure 7 illustrates U-Net’s validation result

masks.
TABLE II

VALIDATION METRICS FOR U-NET

Metric Value
Validation Loss 0.1059
Validation IoU 0.8096

Validation Precision 0.9144
Validation Recall 0.8760

Validation F1 0.8948

Fig. 7. Examples of U-Net’s validation images (top row) and result
masks(bottom row).

Although the validation results look promising, the testing

results are less accurate, as shown in Figure 8. U-Net some-

times misclassified ballast and tree logs as vegetation. This

shows that the model, while performing well on the validation

set, has limitations in generalizing to real-world images with

more complex backgrounds.

Fig. 8. Examples of U-Net’s test images (top row) and result masks(bottom
row).

C. DeepLabv3+

Table III shows the results of the DeepLabv3+ validation

for the vegetation class. The DeepLabv3+ model achieved

a validation loss of 0.0534, indicating that its predictions

closely match the ground truth masks. A high IoU of 0.9124

demonstrates excellent overlap between predicted and true veg-

etation regions, reflecting strong segmentation performance.

The model also exhibits high precision (0.9570) and recall

(0.9510), indicating it correctly identifies most vegetation

pixels while producing few false positives. The F1 score of

0.9540 confirms a strong balance between precision and recall.

Figure 9 illustrates the validation result masks of DeepLabv3+.

This strong performance persists on unseen testing images,

as shown in Figure 10. Unlike U-Net, DeepLabv3+ is able

to differentiate vegetation from ballast and tree logs. This

improved performance can be attributed to the more complex

model structure, with a model size of 346.5 MB, compared to

118.5 MB for U-Net, and the use of a pre-trained backbone.

TABLE III
VALIDATION METRICS FOR DEEPLABV3+

Metric Value
Validation Loss 0.0534
Validation IoU 0.9124

Validation Precision 0.9570
Validation Recall 0.9510

Validation F1 0.9540

V. CONCLUSION

Vegetation control is vital for railway safety and infras-

tructure integrity. This study compared three deep learning

approaches; YOLOv8, U-Net, and DeepLabv3+, for detecting

overgrown vegetation alongside railroad tracks. DeepLabv3+

consistently achieved the highest precision, recall, and seg-

mentation quality, proving most effective in complex rail envi-

ronments. The YOLOv8 instance segmentation model outper-

formed its object detection counterpart, achieving a higher F1

score, mAP@0.5, and more stable precision–recall behavior,

Fig. 9. Examples of DeepLabv3+’s validation images (top row) and result
masks(bottom row).

Fig. 10. Examples of DeepLabv3+’s test images (top row) and result
masks(bottom row).

which underscores segmentation’s advantage for irregular, or-

ganic defects. Nevertheless, YOLO’s overall performance still

falls below desired thresholds. Future efforts should explore

the integration of binary railway masks to focus detection on

track areas and potentially boost accuracy. To address dataset

limitations, additional real-world railroad data will be col-

lected to improve model generalization and performance. Real-

world deployment challenges, including variability in lighting,

weather, and track environments, will be verified through

manual validation to assess model performance under different

harsh deployment conditions. Finally, evaluating deeper and

more advanced U-Net variants such as attention-augmented or

residual-connected architectures, could close the performance

gap with DeepLabv3+ on unseen testing images.

ACKNOWLEDGMENT

This research was supported by Marshall University’s NSF

REU program for Data Analytics. We thank the NSF and the

U.S. Army Engineer Research and Development Center for

facilitating this work in intelligent transportation systems, as

well as program chairs Dr. Haroon Malik and Dr. Yousef Fazea

for their guidance and feedback.

REFERENCES

[1] American Society of Civil Engineers, “2025 report card for america’s
infrastructure: Rail,” 2025.

[2] Association of American Railroads, “Rail Transportation and the U.S.
Economy: Fueling Growth, Trade, and Opportunity,” 2025.

[3] R. G. Nyberg, “Automating condition monitoring of vegetation on
railway trackbeds and embankments,” Ph.D. dissertation, Edinburgh
Napier University, 2017.

[4] U.S. Code of Federal Regulations, “49 cfr §213.321 - vegetation,” 2024.
[5] R. Tang, L. D. Donato, N. Bessinovic, F. Flammini, R. M. Goverde,

Z. Lin, R. Liu, T. Tang, V. Vittorini, and Z. Wang, “A literature review
of artificial intelligence applications in railway systems,” Transportation
Research Part C: Emerging Technologies, vol. 140, p. 103679, 2022.

[6] G. Jocher, A. Chaurasia, and J. Qiu, “Ultralytics yolov8,” 2023.
[Online]. Available: https://github.com/ultralytics/ultralytics

[7] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” CoRR, vol. abs/1505.04597, 2015.
[Online]. Available: http://arxiv.org/abs/1505.04597

[8] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and
H. Adam, “Encoder-decoder with atrous separable convolution
for semantic image segmentation,” 2018. [Online]. Available:
https://arxiv.org/abs/1802.02611

[9] P. Lewis, R. Casey, and S. Hancock, “Lidar for vegetation applications,”
University of Durham, Tech. Rep., 2007.

[10] Y. Min, B. Xiao, J. Dang, B. Yue, and T. Cheng, “Real time detection
system for rail surface defects based on machine vision,” EURASIP
Journal on Image and Video Processing, 2018.

[11] S. Xu, Q. Feng, J. Fei, G. Zhao, X. Liu, H. Li, C. Lu, and Q. Yang, “A
locating approach for small-sized components of railway catenary based
on improved yolo with asymmetrically effective decoupled head,” IEEE
Access, vol. 11, pp. 34 870–34 879, 2023.

[12] D. Gautam, Z. Mawardi, L. Elliott, D. Loewensteiner, T. Whiteside, and
S. Brooks, “Detection of invasive species (siam weed) using drone-based
imaging and yolo deep learning model,” Remote Sensing, vol. 17, p. 120,
01 2025.

[13] A. D’Arms, H. Song, H. S. Narman, N. C. Yurtcu, P. Zhu, and
A. Alzarrad, “Automated railway crack detection using machine learning:
Analysis of deep learning approaches,” in IEEE 15th Annual Information
Technology, Electronics and Mobile Communication Conference (IEM-
CON), University of California, Berkeley, CA, Oct. 24–26 2024.

[14] D. Kholiya, A. K. Mishra, N. K. Pandey, and N. Tripathi, “Plant detection
and counting using yolo based technique,” in 2023 3rd Asian Conference
on Innovation in Technology (ASIANCON), 2023, pp. 1–5.

[15] N. K. Gupta, M. Dougherty, B. Payvar, R. G. Nyberg, and S. Yella,
“Machine vision approach for automating vegetation detection on rail-
way tracks,” Journal of Intelligent Systems, vol. 22, no. 2, pp. 179–196,
2013.

[16] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” 2016. [Online]. Available:
https://arxiv.org/abs/1506.02640

[17] cvr, “cvr dataset,” https://universe.roboflow.com/cvr-yqqba/cvr-
frvvh , mar 2025, visited on 2025-09-05. [Online]. Available:
https://universe.roboflow.com/cvr-yqqba/cvr-frvvh

[18] polesdataset, “Cityscapes-external-v1 dataset,”
https://universe.roboflow.com/polesdataset/cityscapes-external-v1
, dec 2022, visited on 2025-09-05. [Online]. Available:
https://universe.roboflow.com/polesdataset/cityscapes-external-v1

[19] tfg, “vegetation dataset,” https://universe.roboflow.com/tfg-
o94q4/vegetation-a11kr , aug 2025, visited on 2025-09-05. [Online].
Available: https://universe.roboflow.com/tfg-o94q4/vegetation-a11kr

[20] vegetation, “vegetation dataset,”
https://universe.roboflow.com/vegetation-ojnpy/vegetation-gynk8
, may 2024, visited on 2025-09-05. [Online]. Available:
https://universe.roboflow.com/vegetation-ojnpy/vegetation-gynk8

[21] Tree, “Interval-tree-mapillary-v4 dataset,”
https://universe.roboflow.com/tree-5s1ky/interval-tree-mapillary-v4
, may 2025, visited on 2025-09-05. [Online]. Available:
https://universe.roboflow.com/tree-5s1ky/interval-tree-mapillary-v4

