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Abstract—Railroad crossties are paramount to ensuring struc-
tural integrity and passenger safety. Traditional inspection meth-
ods have been a manually intensive process, subject to fatigue,
bias, and human error, prompting an inquiry into more consistent
and expedited inspection modalities. Automated defect detection
leveraging deep learning and computer vision can drastically
reduce diagnostic time and ensure prompt maintenance interven-
tion. This paper evaluates two contrasting state-of-the-art object
detection models, You Only Look Once (YOLOv11, the latest
release from Ultralytics) and Real-Time Detection Transformer
(RT-DETR), for automating detection of defective ties, marking
the first competitive benchmarking within this domain. This study
uses real, field-test footage collected on stretches of railroads that
was standardized and preprocessed for normalization to form our
dataset, consisting of 500 annotated frames across three distinct
classes: wood checks, decay, and ties. Both models were trained
using 5-fold cross-validation and evaluated based on the F1 score,
Precision, Recall, and Mean Average Precision (mAP) at varying
IoU thresholds. YOLOv11 outperformed RT-DETR in all metrics
except Recall (0.9104 vs. 0.9119), achieving an F1 score of 0.9400,
mAP50 of 0.9530, and mAP50-95 of 0.9014. These results suggest
that YOLOv11 is effective not only in defect recognition but also
in spatial localization at various precision thresholds, fostering
higher safety standards in the process. This makes it a strong
candidate for deployment on lightweight mobile or embedded
platforms, representative of real-world use cases. Overall, this
research demonstrates the robust utility of deep learning for
enhanced infrastructure monitoring, reducing inspection time and
labor costs while heightening passenger safety and mitigating
derailment risks, with future work needed to assess performance
under varied lighting, weather, and tie conditions.

Index Terms—Railroad Safety, Infrastructure Monitoring,
Computer Vision, Deep Learning, Object Detection, Vision Trans-
formers

I. INTRODUCTION

Modern railroads are pivotal modes of daily public trans-

portation, bridging cities, states, economies, and cultures. Ac-

cording to the U.S. Census Bureau, in a 2019 survey, more than

11.8% of public transit commuters in metropolitan complexes

relied on railroad systems to commute [1]. Seemingly minor

defects can exacerbate under continuous pressure and stress,

leading to train derailments [2]. Given the dependence of

regional transit and freight logistics on railway systems, issues

such as aging infrastructure, high passenger volume, and

transit speeds have heightened the need for effective railroad

Structural Health Monitoring (SHM).

Traditional Non-Destructive Testing (NDT) methods have

been favored in diagnosing structural defects. Wang et al. [3]

inform that years of high speed and loads make the top

surfaces of rails vulnerable to defects. While effective at

finding medium to large faults, Magnetic Flux Testing (MFL)

is hindered on a few fronts. First, its efficacy is maximized only

at low speeds up to 20km/hr [3]. Second, as Gong et al. [4]

suggest, even at low speeds, MFL testing captures fluctuations

in flux signals due to surface irregularities (coatings, debris).

Third, the fallback option is using manual diagnostic tools,

undercutting MFL’s accuracy and is time and labor-intensive

[5]. On the contrary, other NDT methods, such as Ultrasonic

Testing (UT), detect internal structural faults at speeds up

to 80km/hr. However, high-frequency ultrasonic waves create

disturbances or echoes, rendering surface detection through

previous methods futile in extreme cases [3]. Moreover, the

vast speed discrepancies between these methods make parallel

assessment of surface and internal faults challenging.

Consequently, this limitation has prompted research into

automated, real-time defect detection using machine learning.

Convolutional Neural Network (CNN)-based object detec-

tors, particularly the You Only Look Once (YOLO) lineage,

have seen widespread adoption in this space. In contrast,

transformer-based architectures remain underexplored despite

promising results in other computer vision domains. Addi-

tionally, few studies focus on crosstie (also referred to as

ties’ or sleepers’) defect detection, which is imperative for

track-level structural integrity. This paper addresses these gaps

by benchmarking YOLOv11 against the Real-Time Detection

Transformer (RT-DETR) to identify railroad tie defects under

diverse visual conditions.

The remainder of this paper presents the following: Sec-

tion II outlines existing scholarly discussions. Section III

delves into the machine learning models used. Section IV

introduces our methodology, spanning our dataset and training

protocol. Section V reveals the quantitative findings of our

study, while discussing these results in a real-world context.

Section VI finally concludes the paper with directions for

future work.



II. RELATED WORKS

A. Early Machine Learning Approaches to Rail Defect Detec-
tion

Rapid advancements in imaging technology and computa-

tional resources have catalyzed exploring Machine Learning

(ML) applications for rail surface defect detection, beginning

in static image classification and trending toward real-time

detection [6]. Morteza Mirzaei et al. [7] used ML to identify

rail components, such as ballasts and ties, from LiDAR and

inductive proximity sensor data. Using both decision trees and

logistic regression led to a classification accuracy of 95%,

highlighting the efficacy of ML in this domain, even if not

in real-time deployment contexts [7]. Similarly, Sresakoolchai

and Kaewunruen [8] integrated a dataset of defect logs and

track profiles (shape and alignment metrics) collected from

Track Geometry Cars (TGCs), testing a combination of Deep

Neural Networks (DNNs), Convolutional Neural Networks

(CNNs), Support Vector Machines (SVMs), and Gradient-

Boosted (GB) models. This led to 94% accuracy, while also

uncovering correlations between track curvature and defect

likelihood, underscoring inferential possibilities with ML mod-

els without auxiliary inputs [8]. Collectively, these studies

demonstrate how primitive ML models effectively capture

the complexities of heterogeneous data streams, even in the

absence of vision-based features.

B. Deep Learning Methods and CNN-Based Models

Xu et al.’s study [9] build upon previous studies, implement-

ing Deep Learning (DL) to address subgrade defects impacting

foundational soil and ground mixtures using pre-trained mod-

els and CNNs trained on Ground Penetrating Radar (GPR)

waveforms. With an F-1 score of 83.6%, CNNs outperformed

simpler methods such as SVMs and Histogram-Oriented Gra-

dients (HOGs), confirming that they can capture insights from

dense datasets, even in subterranean, non-visual contexts [9].

CNNs are equally robust at visual feature extraction, forming

the basis for modern object detection. Even in a spartan binary

classification of defective image samples (positive/negative),

CNNs implemented using TensorFlow achieved an overall

accuracy of 92.21% [10]. Compared to classical techniques,

CNNs facilitate the spatial localization of surface defects,

capturing abstract visual patterns across a myriad of track

settings, making them effective in exhaustive search tasks [6],

[9], [11].

These conclusions spurred the development of CNN-based

detection algorithms such as You Only Look Once (YOLO).

For instance, Damai et al. [11] benchmarked four different

versions of the YOLO model (v5, v8, v9, and v10) to find

a configuration best suited to detect missing track bolts,

concluding that YOLOv5 was performed best with an F-1

score of 86.45%. However, D’Arms et al.’s investigation [12]

disputed this finding by demonstrating that after training eight

different models (YOLO variants and ResNet) to identify

cracks and gaps in railroad infrastructure, YOLOv8 performed

best with an accuracy of over 92%. Given that YOLOv5 is

intended for lightweight deployment contexts, it is noteworthy

that it outperformed YOLOv8 in Damai et al.’s study. This

disparity may arise from applying these models to different

subproblems, leading to exploring how changing the model

architecture impacts performance.

Both Chen et al.’s [13] and Wang et al.’s [14] study aim

to fill this void, advancing beyond more incremental enhance-

ments to YOLO and reflecting a shift towards architectural

optimality balancing performance with real-world deployabil-

ity. Minimizing the model parameters and computation load

without sacrificing detection accuracy is paramount. Chen et

al. [13] implemented Depthwise Separable Convolutions (DSP)

and Ghost modules, reducing the computational workload of

YOLOv5s by up to 15%. Unlike the former study, Wang et

al. [14] retain the base model size for YOLOv8 to show that

architectural tuning, using feature recalibration and modified

convolutional structures, can still yield improved performance

while minimizing resource demands. These modifications align

with a real-world need to make real-time infrastructure inspec-

tion compatible with mobile and field devices. Both studies use

enhanced attention mechanisms for improved feature represen-

tation (PSCA and EMA) to dynamically recalibrate features

across multiple layers. This result proves valuable in complex

faults, where standard YOLO feature maps may underper-

form. Another commonality between both studies is modifying

YOLO’s default loss function, substituting Alpha-IoU and

Focal-SIoU, respectively, to improve robustness against hard-

to-classify samples [13], [14]. In the case of Wang et al. [14],

these modifications to YOLOv8n yielded enhanced accuracy

of 94.1%.

C. Mixed Modality Frameworks and Data Fusion Techniques

Mixed-modality approaches in research have gained trac-

tion, combining object detection methods with complementary

inputs or reasoning frameworks. Unimodal approaches stand

vulnerable to real-world conditions due to insufficient, rep-

resentative training data, leading to poor generalization and

over-reliance on hyperparameter tuning. To address this issue,

researchers have explored two approaches, including integrat-

ing new input frameworks and addressing dataset limitations

to heighten decision-making accuracy.

Unimodal DL methodologies, despite their promise, face

limitations in complex deployment environments due to vari-

ations such as noisy, real-world data, small targets, and shad-

ows [15]. Recent work in mixed modality frameworks hopes

to overcome these deficiencies. For example, Rivero et al.’s pa-

per [15] integrated a modified UberNet and YOLO DL model

with belief theory frameworks (Markov Random Fields) to

simulate human-like reasoning when detecting structural faults

such as surface damage, broken rails, and missing fasteners.

Accompanying this research direction is Wen et al.’s study [6],

in which a framework called MSCM-Net is introduced, fusing

RGB image inputs with geometric depth maps through the use

of ResNet34 and multi-stream fusion modules such as MSDF,

CCAM, and TSDF for an enriched spatial representation

of rail defects. Concurrently, an affiliated decoder structure



localizes and reconstructs defect boundaries under visually

ambiguous conditions. MSCM-Net outperformed unimodal

approaches across all standard evaluation metrics, particularly

showing promise in generalizing defect characteristics even in

the presence of noisy features. Despite enhanced reasoning

frameworks and architectures, Rivero et al. [15] and Wen et

al. [6] acknowledge that model performance is predominantly

contingent on data quality, with complications such as incon-

sistent lighting conditions, boundary regions, and target sizes

ultimately undermining prediction quality and generalizability.

Scarcity in robust, model-worthy railroad datasets has

prompted interest in synthetic data generation, particularly us-

ing Generative Adversarial Networks (GANs). GANs are con-

flicting DNNs, consisting of two components, a generator that

trains on authentic images and reproduces synthetic samples

and a discriminator that repeatedly verifies whether a sample

is real or synthetic, thereby creating high-fidelity samples [16],

[17]. Xia et al. [5] report that it augments training data and

enables research groups to control defect characteristics and

appearance. However, GANs in this domain are limited in

generalizability, especially for underrepresented subproblems.

Labeling is another hindrance with visual datasets, and current

literature acknowledges it as a significant bottleneck in dataset

construction for rail defect detection. Moreover, label fatigue

due to this manual process directly impacts model perfor-

mance. Lester et al.’s paper [18] introduces a semi-automated

labeling pipeline using reinforcement learning. They use a pre-

trained YOLO model from a small subset of their dataset

to label the remaining samples, attaching class labels and

bounding boxes. Their work shows massive promise, reducing

label time by up to 50%: implementing this in future work can

minimize bias, fatigue, and time costs, particularly in large-

scale ML workflows.

D. Emergence of Transformer-Based Architectures

Recent developments in Vision Transformers (ViTs) have

challenged the contention that transformer architectures are

not suitable for real-time detection applications. Zhao et

al. [2] contend that their Real-Time Detection Transformer

(RT-DETR) model outperforms analogous YOLOv5 on the

COCO (Common Objects in Context) dataset, particularly at

high-speed image thresholds (108 fps). This study challenges

the conventional notion that transformers are excessively slow

or impractical for real-time deployment. Other features such

as limiting Non-Maximum Suppression (NMS), hybrid en-

coder architecture, and adjustable decoder layers, allow ViTs

to support more robust object detection pipelines tuned for

their respective deployment contexts. Phaphuangwittayakul et

al. [19] adapted a Dual-Attention Vision Transformer (DaVIT)

in parallel for railroad defect detection. Its dual attention

encoder architecture allows for the capture of a global context

and granular features, resulting in a high degree of precision

in object detections. Trained across a multitude of classes

and features (rail ballasts, fishplates, fasteners, and surface

defects), they found that ViTs adapt well to unseen features,

particularly in scenarios where inadequate data is available

for benchmarking. Most notably, this study does not compare

the defect detection performance of DaVIT with a comparable

YOLO despite the latter’s widespread adoption in this domain.

This omission underscores a gap in the literature, prompting

exploration of how the latest transformer architectures compare

with the preeminent CNN-based detector, YOLO.

On the one hand, YOLO has been extensively benchmarked

in railroad defect detection scenarios, but few studies focus on

tie-level faults. On the other hand, ViTs represent an emerging

technology, yet their full potential remains relatively untapped

in this domain, particularly in comparison with YOLO-based

methodologies. This paper bridges this gap by comparing the

performance of a traditional CNN-based detector (YOLOv11)

against a transformer architecture-based detector (RT-DETR)

to detect tie defects under diverse visual conditions and to gain

insight into the scope for future field deployment.

III. MACHINE LEARNING MODELS

The existing scholarly conversation enabled a comparison of

traditional CNN-based detectors with emerging transformer-

based detectors. However, selecting an appropriate model

was non-trivial, given the bevy of algorithms available. To

facilitate our selection, we set a three-fold criterion: (1) real-

time inspection potency to relieve manual assessment and

expedite maintenance, (2) effective balance of speed and

accuracy, particularly in object localization, and (3) multi-

class detection capabilities for defective ties. Accordingly, we

finalized YOLOv11 and RT-DETR for their alignment with

this criterion.

A. You Only Look Once (YOLO)

Object detection tasks encompass both object recognition

and localization, utilizing bounding boxes. Early algorithms

divided input images into multiple regions, classified each par-

tition, and derived high probability scores, indicating accurate

detection.

However, this repetitive process was both time and resource-

intensive. The YOLO lineage of object detection algorithms

addressed this limitation by using a one-stage CNN to analyze

all regions of an image, enabling real-time detection prospects.

Developed by Darknet in 2015, YOLOv1 overlays a grid on

an input image and generates a series of bounding boxes

around the grid cells [20]. Each bounding box is associ-

ated with a confidence level that reflects the probability of

the box containing a particular class. Lastly, Non-Maximum

Suppression (NMS) is implemented during post-processing

to systematically review all proposed bounding boxes. After

sorting bounding boxes by their respective class probabilities,

NMS iteratively considers the highest probability bounding

box and suppresses any overlapping bounding boxes, based

on a predefined threshold.

In the following decade, YOLO has undergone rapid evolu-

tion. YOLOv2 introduced batch normalization, anchor boxes,

and k-means clustering to improve localization accuracy and

recall, particularly for small objects. YOLOv3 advanced the



architecture by adopting Darknet-53, integrating residual con-

nections and multi-scale prediction while replacing softmax

with independent logistic classifiers to support multi-label clas-

sification. YOLOv4 and YOLOv5 leveraged a CSPDarknet53

backbone, Spatial Pyramid Pooling (SPP), and PANet for

bottom-up path aggregation, mosaic data augmentation, and

Self-Adversarial Training pipelines. Furthermore, YOLOv5

was the first of its kind to support multiple model sizes (s, m, l,

or x) to accommodate varying deployment scenarios. YOLOv7

introduced E-ELAN (Extended Efficient Layer Aggregation

Network), enhancing feature extraction without compromis-

ing existing gradient paths. Later variants like YOLOv8 and

YOLOX presented decoupled heads, anchor-free detection,

and modular task support-firmly establishing a shift toward

flexible, accurate, and lightweight object detectors for diverse

use cases. YOLOv9 took a significant stride by introducing

Programmable Gradient Information (PGI) and a Generalized

Efficient Layer Aggregation Network (GELAN), heightening

network gradient flow and feature reuse during training, setting

a new benchmark on MS COCO, especially in real-time

precision [20].

In late 2024, Ultralytics unveiled YOLOv11, building upon a

decade-long pursuit of enhancements tailored to modern com-

puter vision challenges. It features an upgraded backbone for

enhanced feature extraction in complex search tasks. Moreover,

with a revised neck architecture and an optimized training and

evaluation pipeline, YOLOv11 outperformed predecessors like

YOLOv8 in mean Average Precision (mAP) on the COCO

dataset despite housing 22% fewer model parameters. These

improvements support broader vision tasks, including image

segmentation, classification, pose estimation, and oriented ob-

ject detection [20].

Its lightweight architecture and enhanced integration for

multi-device deployment contexts make it a compelling choice

for tie-grade defect detection in rail infrastructure, where real-

time precision and hardware constraints are key operational

considerations.

B. Real-Time Detection Transformer (RT-DETR)

Transformer architectures were predominantly used for Nat-

ural Language Processing (NLP) tasks. However, in recent

years, they have been adapted for vision tasks [21]. ViTs,

such as the Detection Transformer (DETR), reframe object

detection as a set prediction problem using an encoder-decoder

architecture. A convolutional backbone first extracts a feature

map from the input image. The encoder then divides this map

into fixed-size patches, each flattened into an embedding and

paired with a positional tag to preserve the spatial structure.

Using self-attention, the encoder models relationships across

all patches simultaneously. The decoder receives learned object

queries and interacts with the encoded features to predict object

bounding boxes and class labels directly. These facets enable

ViTs to model global spatial dependencies within an image,

which is particularly valuable when detecting diverse defect

patterns and tie types [19].

RT-DETR builds on these milestones with a series of key

architectural changes. First, a hybrid encoder architecture

enables multi-scale feature extraction while reducing com-

putational resource demands. Second, object queries employ

Intersection over Union (IoU) thresholds to prioritize attention

to the most relevant objects in an image, enhancing detection

accuracy. Third, RT-DETR’s decoder layers can be adjusted,

impacting its inference speeds: this scope for modification

facilitates practical application. Finally, RT-DETR simplifies

the detection pipeline by eliminating the need for NMS

post-processing and anchored bounding boxes compared to

equivalent YOLO versions, heightening model efficiency and

generalization [22]. When benchmarked on the COCO dataset,

RT-DETR outperformed state-of-the-art YOLO variants on

mean Average Precision (mAP), solidifying its viability for

real-time, high-accuracy detection tasks.

IV. METHODOLOGY

A. Dataset

Railroad ties are horizontal beams that span the rail ballast,

providing structural stability and integrity to the railroad in-

frastructure. Ties are typically made of wood or reinforced

concrete, with recent investments in degradable, composite

materials. Each material’s structural properties are prone to

different types of visual defects. However, due to the lack of

reliable images for both concrete and composite ties, this study

focused solely on visual defects for wood ties.

To construct the dataset, overhead railroad footage was

recorded using a custom-built rig, producing 5-minute video

streams. To ensure each frame included a distinct set of ties,

averting redundancy during training, a sampling interval of 15

frames was applied, extracting every 15th frame from the MP4

video, ensuring variability and reducing overfitting.

TABLE I
DISTRIBUTION OF ANNOTATED CLASSES IN THE DATASET

Class Label Distribution Count
Wood Check 716
Wood Decay 1,329
Wood Ties 1,779

B. Data Annotation Strategy and Preprocessing

Following the initial frame extraction, 573 images were

obtained from the field test footage. Each image was manually

inspected for visual clarity and relevance. Frames with high

or low exposure, found at the beginning or end of these

recordings, were discarded. Other frames with blur or visual

obstructions from surrounding vegetation were also excluded.

All valid images were then padded with black bars on top and

bottom to fit the square dimension requisites for DL models

without altering the original aspect ratio of 4:3.

This final dataset, comprising 500 images, is suitable for two

primary use cases. The first focused on identifying segments

of railroad tracks with missing ties. During the initial manual

inspection, 20 images were found to be missing ties. This

inclusion, though limited, helps the model learn features of



tracks without ties. For this task, bounding boxes were drawn

around each tie, using a predetermined threshold to detect

frames with missing ties. The second task detects defective

ties from railroad track segments. Annotations were overlaid to

capture two predominant defect types in wood ties: decay and

checking. Decay results in surface discoloration and undula-

tion, while checking is characterized by surface splits along or

against the grain of the wood. Defect annotations were nested

inside their corresponding tie bounding boxes, retaining spatial

context. Table I summarizes the defect distributions from the

480 frames with ties.

For additional preprocessing, contrast stretching was applied

through Roboflow’s dashboard, dynamically enhancing con-

trast and exposure ratios to improve feature visibility. Lastly,

the dataset was augmented from 500 to 1,000 samples by

applying the following augmentations: horizontal flips, -10 to

+10 degree adjustments of image hues, -10 to 10% adjustment

of saturation, -5% to 5% adjustment in brightness, and ”salt-

and-pepper” noise injection in up to 0.1% of pixels in the

dataset.

C. Training and Evaluation Protocol

To train both models, first, we selected an appropriate

size and version. For both RT-DETR and YOLOv11, we

used the Large model configuration, which has comparable

parameter counts (32.9 million and 25.3 million, respectively).

Conversely, these versions strike a balance between perfor-

mance and compute resource demands, making them suitable

for mobile or embedded device deployment, unlike their XL

counterparts.

From here, both models were trained using 5-fold cross-

validation, with an 80-20 train-test split. This entails training

each model on five distinct partitions of the dataset, ensur-

ing statistical fidelity and reducing variance from any single

dataset split.

Training took place on Google Compute Engine (GCE)

virtual machines hosted on NVIDIA A100-SXM4 GPUs

equipped with 432 tensor cores and 40GB of virtual memory,

optimal for processing memory-intensive image datasets. For

consistency and experimental fairness, both models used fixed

hyperparameter configurations for epoch count, batch size, and

optimizer type. To evaluate the efficacy of both YOLOv11 and

RT-DETR, we averaged the performance of each fold based

on F1 Score, Precision, Recall, and Mean Average Precision

(mAP).

V. RESULTS AND DISCUSSION

Following training and validation, the box loss, classification

(CLS) loss, and distribution focal (DFL) loss were plotted

over epochs for both models. Across both sets of graphs,

a consistent downward trend indicates that the models fit

the training data while generalizing effectively to validation

patterns, with strong convergence and minimal overfitting.

Table II demonstrates the comparative analysis between

YOLOv11 and RT-DETR for railroad tie defect detection,

based on the average F1 score, Precision, Recall, mAP-50,

TABLE II
AVERAGE PERFORMANCE METRICS OF YOLOV11-L AND RT-DETR-L

ACROSS 5-FOLD CROSS VALIDATION

Performance Metric YOLOv11-L RT-DETR-L
F1 Score (All Classes) 0.9400 ± 0.0089 0.9300 ± 0.0114

Precision 0.9696 ± 0.0077 0.9498 ± 0.0088
Recall 0.9104 ± 0.0147 0.9119 ± 0.0152

mAP50 0.9530 ± 0.0106 0.9321 ± 0.0094
mAP50-95 0.9014 ± 0.0134 0.7898 ± 0.0131

and mAP50-95 following 5-fold cross-validation. YOLOv11

achieved an F1 score of 0.9400, compared to 0.9300 for RT-

DETR, indicating it has a more balanced predictive threshold

between Precision and Recall for all three classes. Accord-

ingly, we observe that YOLOv11 also outperforms RT-DETR,

achieving a Precision score of 0.9696 compared to 0.9498 for

the latter. These two metrics indicate that YOLOv11 can more

effectively localize tie defects without setting false alarms,

enabling a more trustworthy set of predictions. In our proposed

deployment context, with presumably limited field resources,

a higher Precision score allows maintenance crews to focus on

the most critical infrastructure faults rather than responding to

false alerts.

Notably, RT-DETR outperformed YOLOv11 in Recall, with

a score of 0.9119 compared to 0.9104 for the latter. This dis-

crepancy, albeit marginal, suggests RT-DETR is more effective

at identifying all true positives during inferencing. Although

having a higher recall score is indicative of fewer missed

detections, this discrepancy alone is insufficient grounds to

favor RT-DETR over YOLOv11.

TABLE III
AVERAGE PER-CLASS DETECTION PERFORMANCE ACROSS 5-FOLD

CROSS VALIDATION

Class Label YOLOv11 RT-DETR
Wood Check 0.90 0.92
Wood Decay 0.85 0.876
Wood Ties 0.99 0.992

To further investigate these trade-offs, we compared the

confusion matrices of the optimal YOLOv11 and RT-DETR

models, as shown in Figures 1 and 2, respectively, to assess

per-class performance. Our initial observation was that in both

matrices, the diagonals indicating the percentage of correct

predictions are identical, with 95% for Wood Check, 89% for

Wood Decay, and 99% for Wood Sleeper/Ties. Seeing this,

we averaged the performance per class across all five folds to

better gauge model performance. These results are shown in

Table III.

Despite similarities in core classifications, we notice observ-

able differences in defect misclassifications. In Figure 1, the

final column grid illustrates that backgrounds were misclassi-

fied as Wood Checks (30%), Decays (59%), and Ties (11%).

Conversely, in Figure 2, backgrounds were misclassified as

Checks (53%), Decays (44%), and Ties (2%). This indicates

that it is better at distinguishing ties from the background than



Fig. 1. Normalized confusion matrices for YOLOv11-L on the best-
performing folds, showing per-class prediction accuracy across Wood Check,
Wood Decay, Wood Tie/Sleeper, and background classes.

Fig. 2. Normalized confusion matrices for RT-DETR-L on the best-performing
folds, showing per-class prediction accuracy across Wood Check, Wood Decay,
Wood Tie/Sleeper, and background classes.

YOLOv11, but at the same time, it is worse at discerning

checks from the background. It could also explain RT-DETR’s

Recall score as it identifies more backgrounds as defects,

which inflates true positives, as exemplified in Table III, at the

expense of recording false positive classifications. On the other

hand, YOLOv11 appears to have a more even distribution of

false positives, with fewer extremities in its confusion matrices,

which aligns with its higher Precision and F1 scores. To

complement these findings, Figures 3 and 4 present qualitative

predictions from both models across annotated defect classes.

This assessment is further validated when considering how

both models performed in terms of Mean Average Precision

Fig. 3. Sample predictions generated by YOLOv11-L across annotated classes
(Wood Check, Wood Decay and Wood Tie/Sleeper).

Fig. 4. Sample predictions generated by RT-DETR-L across annotated classes
(Wood Check, Wood Decay and Wood Tie/Sleeper).

(mAP) at a standard IoU threshold of 0.5, as well as at varying

thresholds, as shown in Table II. At an IoU threshold of

0.5, YOLOv11 achieved an mAP score of 0.9530, compared

to 0.9321 for RT-DETR. Similarly, when the IoU thresholds

increased from 0.5 to 0.95, YOLOv11 significantly outper-

formed RT-DETR with an mAP50-95 of 0.9014 compared to

0.7898. This not only indicates YOLOv11’s superior defect

localization, with a more accurate set of bounding boxes

at standard IoU thresholds, but also shows the consistent



quality of predictions even with varying degrees of precision.

From these evaluations, YOLOv11’s superior performance

strengthens its case as the ideal object detection backbone

for deployment when configured to run on lightweight mobile

platforms or field-level embedded devices.

VI. CONCLUSION AND FUTURE DIRECTIONS

This research outlined powerful implications of leverag-

ing DL for railroad infrastructure monitoring. First, object

detection models effectively identify discrete visual defects

and capture spatial relationships between object subclasses, as

outlined in the co-occurrences of checks and decays within

wood ties. Second, our findings underscore the importance

of quality data for reliable predictive power. Initial research

directions attempted to integrate more than 10 subclasses

(including various tie materials and defects), without consistent

imaging data. Pivoting to a subset of these defects significantly

narrowed the scope, while also enabling a more comprehensive

performance assessment of two contrasting models. Third,

although transformer architectures offer real-time object de-

tection capabilities and interpretability advantages, traditional

CNN-based detectors, like YOLOv11, remain the benchmark

for real-time applications that fulfill speed, accuracy, and ease

of deployment constraints.

One limitation is that our field test footage was collected

from abandoned rail segments in one geographic region. While

this was a practical testbed, it was more defective, and the

lack of variability in environmental conditions, such as lighting

and weather, limits the generalizability of our results to more

frequently serviced railroads.

Future work can extend this methodology to concrete and

composite ties and source more representative datasets for

defective ties. Other directions include integrating segmenta-

tion algorithms as part of two-step methodologies for finer

localization or developing a defect severity rating system

with railroad governing bodies to generate accessible and

actionable, data-driven insights from infrastructure inspections.
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