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Abstract—Railroad crossties are paramount to ensuring struc-
tural integrity and passenger safety. Traditional inspection meth-
ods have been a manually intensive process, subject to fatigue,
bias, and human error, prompting an inquiry into more consistent
and expedited inspection modalities. Automated defect detection
leveraging deep learning and computer vision can drastically
reduce diagnostic time and ensure prompt maintenance interven-
tion. This paper evaluates two contrasting state-of-the-art object
detection models, You Only Look Once (YOLOVv11, the latest
release from Ultralytics) and Real-Time Detection Transformer
(RT-DETR), for automating detection of defective ties, marking
the first competitive benchmarking within this domain. This study
uses real, field-test footage collected on stretches of railroads that
was standardized and preprocessed for normalization to form our
dataset, consisting of 500 annotated frames across three distinct
classes: wood checks, decay, and ties. Both models were trained
using 5-fold cross-validation and evaluated based on the F1 score,
Precision, Recall, and Mean Average Precision (mAP) at varying
IoU thresholds. YOLOV11 outperformed RT-DETR in all metrics
except Recall (0.9104 vs. 0.9119), achieving an F1 score of 0.9400,
mAP50 of 0.9530, and mAP50-95 of 0.9014. These results suggest
that YOLOV11 is effective not only in defect recognition but also
in spatial localization at various precision thresholds, fostering
higher safety standards in the process. This makes it a strong
candidate for deployment on lightweight mobile or embedded
platforms, representative of real-world use cases. Overall, this
research demonstrates the robust utility of deep learning for
enhanced infrastructure monitoring, reducing inspection time and
labor costs while heightening passenger safety and mitigating
derailment risks, with future work needed to assess performance
under varied lighting, weather, and tie conditions.

Index Terms—Railroad Safety, Infrastructure Monitoring,
Computer Vision, Deep Learning, Object Detection, Vision Trans-
formers

I. INTRODUCTION

Modern railroads are pivotal modes of daily public trans-
portation, bridging cities, states, economies, and cultures. Ac-
cording to the U.S. Census Bureau, in a 2019 survey, more than
11.8% of public transit commuters in metropolitan complexes
relied on railroad systems to commute [1]. Seemingly minor
defects can exacerbate under continuous pressure and stress,
leading to train derailments [2]. Given the dependence of
regional transit and freight logistics on railway systems, issues
such as aging infrastructure, high passenger volume, and
transit speeds have heightened the need for effective railroad
Structural Health Monitoring (SHM).

Traditional Non-Destructive Testing (NDT) methods have
been favored in diagnosing structural defects. Wang et al. [3]
inform that years of high speed and loads make the top
surfaces of rails vulnerable to defects. While effective at
finding medium to large faults, Magnetic Flux Testing (MFL)
is hindered on a few fronts. First, its efficacy is maximized only
at low speeds up to 20km/hr [3]. Second, as Gong et al. [4]
suggest, even at low speeds, MFL testing captures fluctuations
in flux signals due to surface irregularities (coatings, debris).
Third, the fallback option is using manual diagnostic tools,
undercutting MFL’s accuracy and is time and labor-intensive
[5]. On the contrary, other NDT methods, such as Ultrasonic
Testing (UT), detect internal structural faults at speeds up
to 80km/hr. However, high-frequency ultrasonic waves create
disturbances or echoes, rendering surface detection through
previous methods futile in extreme cases [3]. Moreover, the
vast speed discrepancies between these methods make parallel
assessment of surface and internal faults challenging.

Consequently, this limitation has prompted research into
automated, real-time defect detection using machine learning.
Convolutional Neural Network (CNN)-based object detec-
tors, particularly the You Only Look Once (YOLO) lineage,
have seen widespread adoption in this space. In contrast,
transformer-based architectures remain underexplored despite
promising results in other computer vision domains. Addi-
tionally, few studies focus on crosstie (also referred to as
ties’ or sleepers’) defect detection, which is imperative for
track-level structural integrity. This paper addresses these gaps
by benchmarking YOLOvI1 against the Real-Time Detection
Transformer (RT-DETR) to identify railroad tie defects under
diverse visual conditions.

The remainder of this paper presents the following: Sec-
tion II outlines existing scholarly discussions. Section III
delves into the machine learning models used. Section IV
introduces our methodology, spanning our dataset and training
protocol. Section V reveals the quantitative findings of our
study, while discussing these results in a real-world context.
Section VI finally concludes the paper with directions for
future work.



II. RELATED WORKS

A. Early Machine Learning Approaches to Rail Defect Detec-
tion

Rapid advancements in imaging technology and computa-
tional resources have catalyzed exploring Machine Learning
(ML) applications for rail surface defect detection, beginning
in static image classification and trending toward real-time
detection [6]. Morteza Mirzaei et al. [7] used ML to identify
rail components, such as ballasts and ties, from LiDAR and
inductive proximity sensor data. Using both decision trees and
logistic regression led to a classification accuracy of 95%,
highlighting the efficacy of ML in this domain, even if not
in real-time deployment contexts [7]. Similarly, Sresakoolchai
and Kaewunruen [8] integrated a dataset of defect logs and
track profiles (shape and alignment metrics) collected from
Track Geometry Cars (TGCs), testing a combination of Deep
Neural Networks (DNNs), Convolutional Neural Networks
(CNNs), Support Vector Machines (SVMs), and Gradient-
Boosted (GB) models. This led to 94% accuracy, while also
uncovering correlations between track curvature and defect
likelihood, underscoring inferential possibilities with ML mod-
els without auxiliary inputs [8]. Collectively, these studies
demonstrate how primitive ML models effectively capture
the complexities of heterogeneous data streams, even in the
absence of vision-based features.

B. Deep Learning Methods and CNN-Based Models

Xu et al.’s study [9] build upon previous studies, implement-
ing Deep Learning (DL) to address subgrade defects impacting
foundational soil and ground mixtures using pre-trained mod-
els and CNNs trained on Ground Penetrating Radar (GPR)
waveforms. With an F-1 score of 83.6%, CNNs outperformed
simpler methods such as SVMs and Histogram-Oriented Gra-
dients (HOGs), confirming that they can capture insights from
dense datasets, even in subterranean, non-visual contexts [9].
CNNs are equally robust at visual feature extraction, forming
the basis for modern object detection. Even in a spartan binary
classification of defective image samples (positive/negative),
CNNs implemented using TensorFlow achieved an overall
accuracy of 92.21% [10]. Compared to classical techniques,
CNNs facilitate the spatial localization of surface defects,
capturing abstract visual patterns across a myriad of track
settings, making them effective in exhaustive search tasks [6],
(9], [11].

These conclusions spurred the development of CNN-based
detection algorithms such as You Only Look Once (YOLO).
For instance, Damai et al. [11] benchmarked four different
versions of the YOLO model (v5, v8, v9, and v10) to find
a configuration best suited to detect missing track bolts,
concluding that YOLOv5 was performed best with an F-1
score of 86.45%. However, D’ Arms et al.’s investigation [12]
disputed this finding by demonstrating that after training eight
different models (YOLO variants and ResNet) to identify
cracks and gaps in railroad infrastructure, YOLOVS8 performed
best with an accuracy of over 92%. Given that YOLOVS is

intended for lightweight deployment contexts, it is noteworthy
that it outperformed YOLOvVS8 in Damai et al.’s study. This
disparity may arise from applying these models to different
subproblems, leading to exploring how changing the model
architecture impacts performance.

Both Chen et al’s [13] and Wang et al.’s [14] study aim
to fill this void, advancing beyond more incremental enhance-
ments to YOLO and reflecting a shift towards architectural
optimality balancing performance with real-world deployabil-
ity. Minimizing the model parameters and computation load
without sacrificing detection accuracy is paramount. Chen et
al. [13] implemented Depthwise Separable Convolutions (DSP)
and Ghost modules, reducing the computational workload of
YOLOVS5s by up to 15%. Unlike the former study, Wang et
al. [14] retain the base model size for YOLOv8 to show that
architectural tuning, using feature recalibration and modified
convolutional structures, can still yield improved performance
while minimizing resource demands. These modifications align
with a real-world need to make real-time infrastructure inspec-
tion compatible with mobile and field devices. Both studies use
enhanced attention mechanisms for improved feature represen-
tation (PSCA and EMA) to dynamically recalibrate features
across multiple layers. This result proves valuable in complex
faults, where standard YOLO feature maps may underper-
form. Another commonality between both studies is modifying
YOLO’s default loss function, substituting Alpha-IoU and
Focal-SIoU, respectively, to improve robustness against hard-
to-classify samples [13], [14]. In the case of Wang et al. [14],
these modifications to YOLOvS8n yielded enhanced accuracy
of 94.1%.

C. Mixed Modality Frameworks and Data Fusion Techniques

Mixed-modality approaches in research have gained trac-
tion, combining object detection methods with complementary
inputs or reasoning frameworks. Unimodal approaches stand
vulnerable to real-world conditions due to insufficient, rep-
resentative training data, leading to poor generalization and
over-reliance on hyperparameter tuning. To address this issue,
researchers have explored two approaches, including integrat-
ing new input frameworks and addressing dataset limitations
to heighten decision-making accuracy.

Unimodal DL methodologies, despite their promise, face
limitations in complex deployment environments due to vari-
ations such as noisy, real-world data, small targets, and shad-
ows [15]. Recent work in mixed modality frameworks hopes
to overcome these deficiencies. For example, Rivero et al.’s pa-
per [15] integrated a modified UberNet and YOLO DL model
with belief theory frameworks (Markov Random Fields) to
simulate human-like reasoning when detecting structural faults
such as surface damage, broken rails, and missing fasteners.
Accompanying this research direction is Wen et al.’s study [6],
in which a framework called MSCM-Net is introduced, fusing
RGB image inputs with geometric depth maps through the use
of ResNet34 and multi-stream fusion modules such as MSDEF,
CCAM, and TSDF for an enriched spatial representation
of rail defects. Concurrently, an affiliated decoder structure



localizes and reconstructs defect boundaries under visually
ambiguous conditions. MSCM-Net outperformed unimodal
approaches across all standard evaluation metrics, particularly
showing promise in generalizing defect characteristics even in
the presence of noisy features. Despite enhanced reasoning
frameworks and architectures, Rivero et al. [15] and Wen et
al. [6] acknowledge that model performance is predominantly
contingent on data quality, with complications such as incon-
sistent lighting conditions, boundary regions, and target sizes
ultimately undermining prediction quality and generalizability.

Scarcity in robust, model-worthy railroad datasets has
prompted interest in synthetic data generation, particularly us-
ing Generative Adversarial Networks (GANs). GANs are con-
flicting DNNs, consisting of two components, a generator that
trains on authentic images and reproduces synthetic samples
and a discriminator that repeatedly verifies whether a sample
is real or synthetic, thereby creating high-fidelity samples [16],
[17]. Xia et al. [5] report that it augments training data and
enables research groups to control defect characteristics and
appearance. However, GANs in this domain are limited in
generalizability, especially for underrepresented subproblems.
Labeling is another hindrance with visual datasets, and current
literature acknowledges it as a significant bottleneck in dataset
construction for rail defect detection. Moreover, label fatigue
due to this manual process directly impacts model perfor-
mance. Lester et al.’s paper [18] introduces a semi-automated
labeling pipeline using reinforcement learning. They use a pre-
trained YOLO model from a small subset of their dataset
to label the remaining samples, attaching class labels and
bounding boxes. Their work shows massive promise, reducing
label time by up to 50%: implementing this in future work can
minimize bias, fatigue, and time costs, particularly in large-
scale ML workflows.

D. Emergence of Transformer-Based Architectures

Recent developments in Vision Transformers (ViTs) have
challenged the contention that transformer architectures are
not suitable for real-time detection applications. Zhao et
al. [2] contend that their Real-Time Detection Transformer
(RT-DETR) model outperforms analogous YOLOVS on the
COCO (Common Objects in Context) dataset, particularly at
high-speed image thresholds (108 fps). This study challenges
the conventional notion that transformers are excessively slow
or impractical for real-time deployment. Other features such
as limiting Non-Maximum Suppression (NMS), hybrid en-
coder architecture, and adjustable decoder layers, allow ViTs
to support more robust object detection pipelines tuned for
their respective deployment contexts. Phaphuangwittayakul et
al. [19] adapted a Dual-Attention Vision Transformer (DaVIT)
in parallel for railroad defect detection. Its dual attention
encoder architecture allows for the capture of a global context
and granular features, resulting in a high degree of precision
in object detections. Trained across a multitude of classes
and features (rail ballasts, fishplates, fasteners, and surface
defects), they found that ViTs adapt well to unseen features,
particularly in scenarios where inadequate data is available

for benchmarking. Most notably, this study does not compare
the defect detection performance of DaVIT with a comparable
YOLO despite the latter’s widespread adoption in this domain.
This omission underscores a gap in the literature, prompting
exploration of how the latest transformer architectures compare
with the preeminent CNN-based detector, YOLO.

On the one hand, YOLO has been extensively benchmarked
in railroad defect detection scenarios, but few studies focus on
tie-level faults. On the other hand, ViTs represent an emerging
technology, yet their full potential remains relatively untapped
in this domain, particularly in comparison with YOLO-based
methodologies. This paper bridges this gap by comparing the
performance of a traditional CNN-based detector (YOLOv11)
against a transformer architecture-based detector (RT-DETR)
to detect tie defects under diverse visual conditions and to gain
insight into the scope for future field deployment.

III. MACHINE LEARNING MODELS

The existing scholarly conversation enabled a comparison of
traditional CNN-based detectors with emerging transformer-
based detectors. However, selecting an appropriate model
was non-trivial, given the bevy of algorithms available. To
facilitate our selection, we set a three-fold criterion: (1) real-
time inspection potency to relieve manual assessment and
expedite maintenance, (2) effective balance of speed and
accuracy, particularly in object localization, and (3) multi-
class detection capabilities for defective ties. Accordingly, we
finalized YOLOvI1 and RT-DETR for their alignment with
this criterion.

A. You Only Look Once (YOLO)

Object detection tasks encompass both object recognition
and localization, utilizing bounding boxes. Early algorithms
divided input images into multiple regions, classified each par-
tition, and derived high probability scores, indicating accurate
detection.

However, this repetitive process was both time and resource-
intensive. The YOLO lineage of object detection algorithms
addressed this limitation by using a one-stage CNN to analyze
all regions of an image, enabling real-time detection prospects.
Developed by Darknet in 2015, YOLOv1 overlays a grid on
an input image and generates a series of bounding boxes
around the grid cells [20]. Each bounding box is associ-
ated with a confidence level that reflects the probability of
the box containing a particular class. Lastly, Non-Maximum
Suppression (NMS) is implemented during post-processing
to systematically review all proposed bounding boxes. After
sorting bounding boxes by their respective class probabilities,
NMS iteratively considers the highest probability bounding
box and suppresses any overlapping bounding boxes, based
on a predefined threshold.

In the following decade, YOLO has undergone rapid evolu-
tion. YOLOV2 introduced batch normalization, anchor boxes,
and k-means clustering to improve localization accuracy and
recall, particularly for small objects. YOLOv3 advanced the



architecture by adopting Darknet-53, integrating residual con-
nections and multi-scale prediction while replacing softmax
with independent logistic classifiers to support multi-label clas-
sification. YOLOv4 and YOLOVS leveraged a CSPDarknet53
backbone, Spatial Pyramid Pooling (SPP), and PANet for
bottom-up path aggregation, mosaic data augmentation, and
Self-Adversarial Training pipelines. Furthermore, YOLOVS
was the first of its kind to support multiple model sizes (s, m, 1,
or x) to accommodate varying deployment scenarios. YOLOV7
introduced E-ELAN (Extended Efficient Layer Aggregation
Network), enhancing feature extraction without compromis-
ing existing gradient paths. Later variants like YOLOvS8 and
YOLOX presented decoupled heads, anchor-free detection,
and modular task support-firmly establishing a shift toward
flexible, accurate, and lightweight object detectors for diverse
use cases. YOLOVY took a significant stride by introducing
Programmable Gradient Information (PGI) and a Generalized
Efficient Layer Aggregation Network (GELAN), heightening
network gradient flow and feature reuse during training, setting
a new benchmark on MS COCO, especially in real-time
precision [20].

In late 2024, Ultralytics unveiled YOLOv1 1, building upon a
decade-long pursuit of enhancements tailored to modern com-
puter vision challenges. It features an upgraded backbone for
enhanced feature extraction in complex search tasks. Moreover,
with a revised neck architecture and an optimized training and
evaluation pipeline, YOLOvV11 outperformed predecessors like
YOLOvVS in mean Average Precision (mAP) on the COCO
dataset despite housing 22% fewer model parameters. These
improvements support broader vision tasks, including image
segmentation, classification, pose estimation, and oriented ob-
ject detection [20].

Its lightweight architecture and enhanced integration for
multi-device deployment contexts make it a compelling choice
for tie-grade defect detection in rail infrastructure, where real-
time precision and hardware constraints are key operational
considerations.

B. Real-Time Detection Transformer (RT-DETR)

Transformer architectures were predominantly used for Nat-
ural Language Processing (NLP) tasks. However, in recent
years, they have been adapted for vision tasks [21]. ViTs,
such as the Detection Transformer (DETR), reframe object
detection as a set prediction problem using an encoder-decoder
architecture. A convolutional backbone first extracts a feature
map from the input image. The encoder then divides this map
into fixed-size patches, each flattened into an embedding and
paired with a positional tag to preserve the spatial structure.
Using self-attention, the encoder models relationships across
all patches simultaneously. The decoder receives learned object
queries and interacts with the encoded features to predict object
bounding boxes and class labels directly. These facets enable
ViTs to model global spatial dependencies within an image,
which is particularly valuable when detecting diverse defect
patterns and tie types [19].

RT-DETR builds on these milestones with a series of key
architectural changes. First, a hybrid encoder architecture
enables multi-scale feature extraction while reducing com-
putational resource demands. Second, object queries employ
Intersection over Union (IoU) thresholds to prioritize attention
to the most relevant objects in an image, enhancing detection
accuracy. Third, RT-DETR’s decoder layers can be adjusted,
impacting its inference speeds: this scope for modification
facilitates practical application. Finally, RT-DETR simplifies
the detection pipeline by eliminating the need for NMS
post-processing and anchored bounding boxes compared to
equivalent YOLO versions, heightening model efficiency and
generalization [22]. When benchmarked on the COCO dataset,
RT-DETR outperformed state-of-the-art YOLO variants on
mean Average Precision (mAP), solidifying its viability for
real-time, high-accuracy detection tasks.

IV. METHODOLOGY
A. Dataset

Railroad ties are horizontal beams that span the rail ballast,
providing structural stability and integrity to the railroad in-
frastructure. Ties are typically made of wood or reinforced
concrete, with recent investments in degradable, composite
materials. Each material’s structural properties are prone to
different types of visual defects. However, due to the lack of
reliable images for both concrete and composite ties, this study
focused solely on visual defects for wood ties.

To construct the dataset, overhead railroad footage was
recorded using a custom-built rig, producing 5-minute video
streams. To ensure each frame included a distinct set of ties,
averting redundancy during training, a sampling interval of 15
frames was applied, extracting every 15th frame from the MP4
video, ensuring variability and reducing overfitting.

TABLE I
DISTRIBUTION OF ANNOTATED CLASSES IN THE DATASET

Class Label | Distribution Count
‘Wood Check 716

Wood Decay 1,329

‘Wood Ties 1,779

B. Data Annotation Strategy and Preprocessing

Following the initial frame extraction, 573 images were
obtained from the field test footage. Each image was manually
inspected for visual clarity and relevance. Frames with high
or low exposure, found at the beginning or end of these
recordings, were discarded. Other frames with blur or visual
obstructions from surrounding vegetation were also excluded.
All valid images were then padded with black bars on top and
bottom to fit the square dimension requisites for DL. models
without altering the original aspect ratio of 4:3.

This final dataset, comprising 500 images, is suitable for two
primary use cases. The first focused on identifying segments
of railroad tracks with missing ties. During the initial manual
inspection, 20 images were found to be missing ties. This
inclusion, though limited, helps the model learn features of



tracks without ties. For this task, bounding boxes were drawn
around each tie, using a predetermined threshold to detect
frames with missing ties. The second task detects defective
ties from railroad track segments. Annotations were overlaid to
capture two predominant defect types in wood ties: decay and
checking. Decay results in surface discoloration and undula-
tion, while checking is characterized by surface splits along or
against the grain of the wood. Defect annotations were nested
inside their corresponding tie bounding boxes, retaining spatial
context. Table I summarizes the defect distributions from the
480 frames with ties.

For additional preprocessing, contrast stretching was applied
through Roboflow’s dashboard, dynamically enhancing con-
trast and exposure ratios to improve feature visibility. Lastly,
the dataset was augmented from 500 to 1,000 samples by
applying the following augmentations: horizontal flips, -10 to
+10 degree adjustments of image hues, -10 to 10% adjustment
of saturation, -5% to 5% adjustment in brightness, and “salt-
and-pepper” noise injection in up to 0.1% of pixels in the
dataset.

C. Training and Evaluation Protocol

To train both models, first, we selected an appropriate
size and version. For both RT-DETR and YOLOv11, we
used the Large model configuration, which has comparable
parameter counts (32.9 million and 25.3 million, respectively).
Conversely, these versions strike a balance between perfor-
mance and compute resource demands, making them suitable
for mobile or embedded device deployment, unlike their XL
counterparts.

From here, both models were trained using 5-fold cross-
validation, with an 80-20 train-test split. This entails training
each model on five distinct partitions of the dataset, ensur-
ing statistical fidelity and reducing variance from any single
dataset split.

Training took place on Google Compute Engine (GCE)
virtual machines hosted on NVIDIA A100-SXM4 GPUs
equipped with 432 tensor cores and 40GB of virtual memory,
optimal for processing memory-intensive image datasets. For
consistency and experimental fairness, both models used fixed
hyperparameter configurations for epoch count, batch size, and
optimizer type. To evaluate the efficacy of both YOLOvI11 and
RT-DETR, we averaged the performance of each fold based
on F1 Score, Precision, Recall, and Mean Average Precision
(mAP).

V. RESULTS AND DISCUSSION

Following training and validation, the box loss, classification
(CLS) loss, and distribution focal (DFL) loss were plotted
over epochs for both models. Across both sets of graphs,
a consistent downward trend indicates that the models fit
the training data while generalizing effectively to validation
patterns, with strong convergence and minimal overfitting.

Table II demonstrates the comparative analysis between
YOLOvl11l and RT-DETR for railroad tie defect detection,
based on the average F1 score, Precision, Recall, mAP-50,

AVERAGE PERFORMANCE METRICS OF YOLOV11-L AND RT-DETR-L

TABLE II

ACROSS 5-FOLD CROSS VALIDATION

Performance Metric

YOLOv11-L

RT-DETR-L

F1 Score (All Classes)

0.9400 £ 0.0089

0.9300 £ 0.0114

Precision

0.9696 £ 0.0077

0.9498 + 0.0088

Recall

0.9104 £ 0.0147

0.9119 + 0.0152

mAP50

0.9530 £ 0.0106

0.9321 + 0.0094

mAP50-95

0.9014 £ 0.0134

0.7898 + 0.0131

and mAP50-95 following 5-fold cross-validation. YOLOv11
achieved an F1 score of 0.9400, compared to 0.9300 for RT-
DETR, indicating it has a more balanced predictive threshold
between Precision and Recall for all three classes. Accord-
ingly, we observe that YOLOvI11 also outperforms RT-DETR,
achieving a Precision score of 0.9696 compared to 0.9498 for
the latter. These two metrics indicate that YOLOv11 can more
effectively localize tie defects without setting false alarms,
enabling a more trustworthy set of predictions. In our proposed
deployment context, with presumably limited field resources,
a higher Precision score allows maintenance crews to focus on
the most critical infrastructure faults rather than responding to
false alerts.

Notably, RT-DETR outperformed YOLOvVI11 in Recall, with
a score of 0.9119 compared to 0.9104 for the latter. This dis-
crepancy, albeit marginal, suggests RT-DETR is more effective
at identifying all true positives during inferencing. Although
having a higher recall score is indicative of fewer missed
detections, this discrepancy alone is insufficient grounds to
favor RT-DETR over YOLOV11.

TABLE III
AVERAGE PER-CLASS DETECTION PERFORMANCE ACROSS 5-FOLD
CROSS VALIDATION

Class Label | YOLOv1l | RT-DETR

Wood Check 0.90 0.92

‘Wood Decay 0.85 0.876
Wood Ties 0.99 0.992

To further investigate these trade-offs, we compared the
confusion matrices of the optimal YOLOvI1 and RT-DETR
models, as shown in Figures 1 and 2, respectively, to assess
per-class performance. Our initial observation was that in both
matrices, the diagonals indicating the percentage of correct
predictions are identical, with 95% for Wood Check, 89% for
Wood Decay, and 99% for Wood Sleeper/Ties. Seeing this,
we averaged the performance per class across all five folds to
better gauge model performance. These results are shown in
Table III.

Despite similarities in core classifications, we notice observ-
able differences in defect misclassifications. In Figure 1, the
final column grid illustrates that backgrounds were misclassi-
fied as Wood Checks (30%), Decays (59%), and Ties (11%).
Conversely, in Figure 2, backgrounds were misclassified as
Checks (53%), Decays (44%), and Ties (2%). This indicates
that it is better at distinguishing ties from the background than
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Fig. 1. Normalized confusion matrices for YOLOvII-L on the best-
performing folds, showing per-class prediction accuracy across Wood Check,
Wood Decay, Wood Tie/Sleeper, and background classes.
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Fig. 2. Normalized confusion matrices for RT-DETR-L on the best-performing
folds, showing per-class prediction accuracy across Wood Check, Wood Decay,
Wood Tie/Sleeper, and background classes.

YOLOVI1I1, but at the same time, it is worse at discerning
checks from the background. It could also explain RT-DETR’s
Recall score as it identifies more backgrounds as defects,
which inflates true positives, as exemplified in Table III, at the
expense of recording false positive classifications. On the other
hand, YOLOv11 appears to have a more even distribution of
false positives, with fewer extremities in its confusion matrices,
which aligns with its higher Precision and F1 scores. To
complement these findings, Figures 3 and 4 present qualitative
predictions from both models across annotated defect classes.

This assessment is further validated when considering how
both models performed in terms of Mean Average Precision

YOLOV11 - L Sample Predicti

Fig. 3. Sample predictions generated by YOLOv11-L across annotated classes
(Wood Check, Wood Decay and Wood Tie/Sleeper).
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Fig. 4. Sample predictions generated by RT-DETR-L across annotated classes
(Wood Check, Wood Decay and Wood Tie/Sleeper).

(mAP) at a standard IoU threshold of 0.5, as well as at varying
thresholds, as shown in Table II. At an IoU threshold of
0.5, YOLOv11 achieved an mAP score of 0.9530, compared
to 0.9321 for RT-DETR. Similarly, when the IoU thresholds
increased from 0.5 to 0.95, YOLOvI11 significantly outper-
formed RT-DETR with an mAP50-95 of 0.9014 compared to
0.7898. This not only indicates YOLOv11’s superior defect
localization, with a more accurate set of bounding boxes
at standard IoU thresholds, but also shows the consistent



quality of predictions even with varying degrees of precision.
From these evaluations, YOLOvI11’s superior performance
strengthens its case as the ideal object detection backbone
for deployment when configured to run on lightweight mobile
platforms or field-level embedded devices.

VI. CONCLUSION AND FUTURE DIRECTIONS

This research outlined powerful implications of leverag-
ing DL for railroad infrastructure monitoring. First, object
detection models effectively identify discrete visual defects
and capture spatial relationships between object subclasses, as
outlined in the co-occurrences of checks and decays within
wood ties. Second, our findings underscore the importance
of quality data for reliable predictive power. Initial research
directions attempted to integrate more than 10 subclasses
(including various tie materials and defects), without consistent
imaging data. Pivoting to a subset of these defects significantly
narrowed the scope, while also enabling a more comprehensive
performance assessment of two contrasting models. Third,
although transformer architectures offer real-time object de-
tection capabilities and interpretability advantages, traditional
CNN-based detectors, like YOLOvV11, remain the benchmark
for real-time applications that fulfill speed, accuracy, and ease
of deployment constraints.

One limitation is that our field test footage was collected
from abandoned rail segments in one geographic region. While
this was a practical testbed, it was more defective, and the
lack of variability in environmental conditions, such as lighting
and weather, limits the generalizability of our results to more
frequently serviced railroads.

Future work can extend this methodology to concrete and
composite ties and source more representative datasets for
defective ties. Other directions include integrating segmenta-
tion algorithms as part of two-step methodologies for finer
localization or developing a defect severity rating system
with railroad governing bodies to generate accessible and
actionable, data-driven insights from infrastructure inspections.
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