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ABSTRACT 

 

Railways are a critical component of transportation infrastructure, enduring significant 

physical stress daily due to the massive weight of trains and their cargo. This constant use can 

lead to the wear and tear of railway components, posing safety risks. One essential part of the 

railway infrastructure is the track bolts, which secure the rails in place, ensuring safe train 

traversal and preventing derailments that could cause severe injuries to passengers. This study 

investigates a machine learning algorithm approach to detect missing track bolts from image and 

video data automatically. The aim is to develop an algorithm that accurately identifies missing 

bolts on railways, thereby mitigating safety risks associated with poorly maintained tracks and 

streamlining maintenance processes. Therefore, various machine learning algorithms are 

evaluated using a specially curated dataset to detect missing track bolts to provide more efficient 

tool for detecting missing track bolts, contributing to railway operations’ reliability and safety. 

 

1. INTRODUCTION 

 

Railways are used everywhere worldwide to transport large amounts of freight and 

passengers. Increased usage has resulted in constant stress to the railroad tracks caused, making 

the risk of railway parts breaking down inevitable. Track bolts are at risk of falling out 

completely. Missing bolts is a common condition that has a considerable impact on safety. 

Identifying the defects can be strenuous. However, with advancements in object detection and 

machine learning, potential ways to detect missing track bolts with high accuracy have been 

developed. Research into the innovative approach is essential to increasing rail transport safety 

for freight and passengers. 

A growing body of literature implements machine learning models to address the missing 

bolt detection issue. Marino et al. developed an algorithm to detect missing bolts in railway 

tracks with 95% effectiveness using an exhaustive search method (Marino, et al. 2007). While 

this approach was impractical for widespread usage, it proved the potential for future research, 
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including this study, which will incorporate more sophisticated detection techniques. Liu et al. 

developed an algorithm capable of detecting missing fastening bolts with 99.96% accuracy at 

speeds of roughly 62 mph using the gradient orientation co-occurrence matrix method and a 

hierarchical detection framework (Liu, Zhou and He 2016). This research also shows that the 

potential for large-scale detection of railroad flaws is possible. Chandran et al. employed a 

Convolutional Neural Network (CNN) and ResNet-50 algorithms, achieving an accuracy rate of 

98% in identifying missing fasteners (Chandran, et al. 2021). Their findings prove that CNNs 

can be an effective model for detecting missing parts. 

Recently, considerable literature has been written about utilizing the You Only Look 

Once (YOLO) model, designed for object detection using a CNN. Fu et al. changed the 

architecture of YOLOv4 by replacing the CSPDarknet53 backbone with MobileNet and 

developing MobileNet-YOLOv4, which has a false positive rate of approximately 5% (Fu, Chen 

and Lv 2022). Li et al. developed an algorithm using the YOLOv5 model with an impressive 

average mean precision of 97.4% (Li, et al. 2023).  

Similarly, others have highlighted the relevance of identifying small objects. Tang et al. 

refined the YOLOv5 model to better detect small objects by utilizing higher resolution (Tang, 

Zhang and Fang 2024), which is particularly relevant for identifying small railway components 

like bolts and fasteners. Wang et al. enhanced the YOLO algorithm to version 9 (YOLOv9) 

(Wang, Yeh and Liao 2024) (Wang, Yeh and Mark Liao 2025). They improved object detection 

accuracy for items like bolts by incorporating programmable gradient information; this helps 

reduce data loss when using deep learning algorithms. Wang et al. developed further 

improvements to create YOLOv10 (Wang, et al. 2024). This version preserves the accuracy of 

YOLO models at significantly reduced parameter counts, thereby increasing overall performance 

compared to its predecessors. Together, these studies provide important insights into how YOLO 

models can be an effective alternative for missing bolt detection. 

This research goal is to increase the effectiveness of rail maintenance by comparing 

recent developed object detection models in YOLO model while detecting missing track bolts in 

joint bars. Different versions of the YOLO model, selected based on previous literature studies, 

will be explored in more detail. Although extensive research has been conducted on missing 

bolts, single studies comparing different YOLO models on this issue are limited. This study aims 

to contribute to this growing area of research by exploring this pioneering model. Implementing 

this technological advancement creates space for innovative devices to collect rail track data 

using computer vision and object detection techniques. According to the results of this research, 

the YOLO model can automatically detect missing bolts with high accuracy, which helps in 

rapid maintenance to ensure the safety of the railway. 

The following sections of this paper are as follows: Section 2describes the used YOLO 

models used. Section 3 explains the methodology used for this study. Section 4 presents the 

results and interpretations to evaluate the performance of each model. Finally, Section 5 

summarizes and concludes the findings of this study. 

 

2. YOLO MODELS 

 

YOLO is a real-time object detection model that uses a CNN to “look” at an image once 

and then detect or identify objects in the image. This scanning gives it a massive speed boost 

over other object detection models and makes it more efficient. This algorithm works by splitting 

the image into a grid and then tries to predict the likelihood that the object is in those boxes. 
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YOLO has been evolving through multiple iterations, from YOLOv1 to YOLOv11. Each 

iteration builds on the previous version. The new model may exhibit enhanced object detection 

performance. Conversely, in the case of missing track bolts, where the object’s size is small, 

newer versions might not perform as well as older ones as they have not been as optimized for 

small objects as the previous versions. In addition to the various models, each mode has sub-

versions. Multiple sub-versions exist that scale from tiny or nano, designed for speed and to be 

used with less powerful hardware, to extensive, designed for more powerful hardware. 

Consequently, this study focuses on four YOLO models: YOLOv5, YOLOv8, YOLOv9, and 

YOLOv10. 

 

A.      YOLOv5 

YOLOv5 is the fifth iteration of the YOLO series (Jocher 2020). It added many new 

changes to its architecture. One of the changes to YOLOv5 was to the architecture’s backbone, 

utilizing an advanced version of the CSP-Darknet53. This version was later updated to the 

YOLOv5u series, which introduced some features from YOLOv8, such as the anchor-free split 

head in YOLOv5. All our tests with YOLOv5 were done with the YOLOv5u versions.  

 

B. YOLOv8 

The eighth version of the YOLO series, YOLOv8 introduced the anchor-free and 

objectness-free split-head (Jocher, Chaurasia and Qiu 2023). These allow the predictions to be 

made with fewer computations, making them quick and efficient while not missing out on 

accuracy. It also had advanced backbone and neck architectures, which refined the model’s 

feature extraction performance.  

 

C. YOLOv9  

YOLOv9 introduced two new significant techniques: Programmable Gradient 

Information (PGI) PGI and Generalized Efficient Layer Aggregation Network (GELAN) (Wang, 

Yeh and Liao 2024) (Wang, Yeh and Mark Liao 2025). PGI helps reduce data loss when using 

deep learning algorithms, which was a previous issue. GELAN helped YOLOv9 to be more 

computationally efficient. 

 

D. YOLOv10 

YOLOv10 changes the architecture using an updated CSPNet version as its backbone 

(Wang, et al. 2024). This change increases the computation and gradient flow. It also allowed for 

reduced latency by utilizing a non-maximum suppression-free method. However, it might 

struggle with small object detection more due to a reduced number of parameters. 

 

3. METHODOLOGY 

 

Quantitative analysis is a well-established approach in research using machine learning 

techniques. This study uses the approach to identify models that effectively detect missing bolts, 

focusing on four models of the YOLO algorithm: YOLOv5, YOLOv8, YOLOv9, and 

YOLOv10. 

Ultralytics provides command-line and programming interfaces for training, validating, 

and predicting on many versions of YOLO. This open-source framework and its pre-trained 

models were used for testing. For YOLOv8, pre-trained models on Common Objects in Context 



   4 
  

(COCO) (Lin, et al. 2014) and Open Images v7 datasets (Kuznetsova, et al. 2020) were used for 

testing.  

 

A. Dataset 

Developing a good dataset to train a model is crucial for tuning the model and ensuring 

that the images used are varied in distinctive characteristics, such as the location of the missing 

bolt or orientation of the image. Eunus et al. created a dataset of 384 images to train models for 

detecting cracks in railroad tracks and missing bolts (Eunus, et al. 2024). Technofly Solution 

compiled a dataset of 1,075 images featuring various angles and types of cracks for a computer 

vision project aimed at railway track crack detection (Technofly Solution 2022). These included 

some images of rail joint bars with missing bolts. Ranganath assembled a dataset of 380 images 

showing various kinds and angles of cracks in railroad tracks. (Ranganath 2023) These also 

included some images of rail joint bars with missing bolts. System Thinking Project released a 

dataset of 717 images for finding railway defects, including joint bar cracks and missing or 

broken bolts (System Thinking Project 2024). 

After re-labeling and combining proper rail joint bar images from the datasets, 191 

images were split into 39 testing and 152 training. The validation images consist of 73 rail joint 

bar images, bringing the dataset’s image count to 264. The dataset also did not include any 

images with true negatives; therefore, the column was removed from the table as all the results 

were zero. In future work, we will increase the dataset by collecting data from the field.  

 

B. Training Parameters 

The models were trained using 500 max epochs, a patience 100, an image size of 

640x480, and batch size 2. Each model was trained on the same dataset with the same 

parameters. Epochs are complete passes through the training dataset. Patience is a training time 

optimization metric, allowing one to set how many epochs to go without improvement before 

stopping the training. Image size is the size of images passed through the dataset in pixels. Batch 

size is how many image samples the model processes each iteration. A larger batch size uses 

more GPU video memory, affecting only the training time and not the results. 

 

C. Model Comparison Metrics 

Ultralytics generates validation metrics at the end of each training. These metrics include 

normalized and basic confusion matrices, F1-confidence curves, precision-confidence curves, 

precision-recall curves, and recall-confidence curves. More metrics are collected at each epoch 

over the training period: box loss, classification loss, and distribution focal loss are collected for 

training and validation, and more results can be obtained for mAP50 (mean Average Precision), 

mAP50-95, precision, and recall. Some training and validation image batches are generated with 

actual and predicted labels. 

Precision, Recall, and F1 Score, the core indicators of the classification model, were used 

for objective performance evaluation. Precision is the ratio of positive predictions to actual 

positives (true and false positives), measuring how well an object is anticipated. Higher precision 

minimizes false positives. On the other hand, Recall is the rate at which an object that is actually 

positive is predicted as positive, which is closely related to false negative. In this study, a false 

negative is a prediction that a bolt is predicted as not missing, but it is actually missing. Higher 

recall minimizes the false negatives. The F1 Score complements the trade-off characteristics of 

these two indicators. 
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The researchers aim to minimize false negatives in the context of missing bolts. 

However, a result with more false negatives may be preferable. For example, if a dataset has 90 

total images and model validation results in 45 true positives (TP), 45 false positives (FP), and 

zero false negatives (FN), a similar result can be gathered by declaring a positive result for every 

image. Therefore, judging solely based on the number of false negatives is unreasonable. 

 

4. RESULTS 

 

This section shows the efficiency of different YOLOv5, YOLOv8, YOLOv9, and 

YOLOv10 models. The models’ TP, FP, FN, precision, recall, and F1 scores were recorded and 

compared using the dataset and parameters shown in the methods sections.  

Table 1 shows the TP, FP, FN, precision, recall, and F1 for the YOLOv5 model. The best 

scores for each metric are bolded in the table.  

 

Table 1: Results of the YOLOv5 Model Tests 

 

Model TP FP FN Precision Recall F1 

YOLOv5nu 62 17 12 0.7848 0.8378 0.8105 

YOLOv5n6u 62 12 12 0.8378 0.8378 0.8378 

YOLOv5su 61 11 13 0.8472 0.8243 0.8356 

YOLOv5s6u 61 14 13 0.8133 0.8243 0.8188 

YOLOv5mu 62 18 12 0.7750 0.8378 0.8052 

YOLOv5m6u 65 19 9 0.7738 0.8784 0.8228 

YOLOv5lu 67 14 7 0.8272 0.9054 0.8645 

YOLOv5l6u 62 24 12 0.7209 0.8378 0.7750 

YOLOv5xu 64 27 10 0.7033 0.8649 0.7758 

YOLOv5x6u 61 11 13 0.8472 0.8243 0.8356 

 

According to our test results, among the variants of the YOLOv5 model, YOLOv5lu 

showed the best performance. It has the highest F1 score, the highest recall score, and the fourth-

highest precision score. This study prioritized recall scores in the context of missing bolts 

because it desired the highest number of true positives possible. The confusion matrix (see 

Figure 1) shows a high number of true positives (67) alongside a slightly high number of false 

negatives (14). This brings its score down slightly, but the small number of false negatives helps 

increase its recall score, 0.9054.  
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Figure 1. The Confusion Matrix for YOLOv5lu 

 

Table 2 shows the results for YOLOv8. The best model would be either YOLOv8x or 

YOLOv8m-oiv7. Both models perform well, with YOLOv8m-oiv7 outperforming YOLOv8x in 

TP, FN, and recall. As stated before, this study prioritized the highest amount of TP and a high 

recall score. In these tests, YOLOv8m-oiv7 has a high TP rate at 66, only one less than the 

highest recorded value, and has the highest recall score, 0.8919, which is only slightly lower than 

the highest recorded value, 0.9054. Those scores give YOLOv8m-oiv7 a slight edge over 

YOLOv8x.  

 

Table 2: Results of the YOLOv8 Model Tests 

 

Model TP FP FN Precision Recall F1 

YOLOv8n 64 17 10 0.7901 0.8649 0.8258 

YOLOv8n-oiv7 59 17 15 0.7763 0.7973 0.7867 

YOLOv8s 66 14 8 0.8250 0.8919 0.8571 

YOLOv8s-oiv7 57 8 17 0.8769 0.7703 0.8201 

YOLOv8m 64 20 10 0.7619 0.8649 0.8101 

YOLOv8m-oiv7 66 12 8 0.8462 0.8919 0.8684 

YOLOv8l 66 17 8 0.7952 0.8919 0.8408 

YOLOv8l-oiv7 62 12 12 0.8378 0.8378 0.8378 

YOLOv8x 65 7 9 0.9028 0.8784 0.8904 

YOLOv8x-oiv7 62 25 12 0.7126 0.8378 0.7702 
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Table 3 shows the performances of the best YOLOv9 models. It is split between 

YOLOv9t and YOLOv9e. Both models share identical TP, FN, and recall scores. YOLOv9e has 

a slightly lower FP rate at 20 FP compared to 23 for YOLOv9t. It has a higher precision of 

0.7701, which is slightly higher than YOLOv9t’s precision of 0.7444. Finally, YOLOv9e also 

has a higher F1 score, which shows a better balance between precision and recall. Both models 

have the highest recall scores at 0.9054 and TP at 67, so choosing either would be good for the 

detection of missing track bolts. 

 

Table 3: Results of the YOLOv9 Model Tests 

 

Model TP FP FN Precision Recall F1 

YOLOv9t 67 23 7 0.7444 0.9054 0.8171 

YOLOv9s 65 16 9 0.8025 0.8784 0.8387 

YOLOv9m 65 28 9 0.6989 0.8784 0.7784 

YOLOv9c 66 18 8 0.7857 0.8919 0.8354 

YOLOv9e 67 20 7 0.7701 0.9054 0.8323 

 

Another metric to consider is the model’s architecture. YOLOv9t or YOLOv9 tiny is a 

lightweight model with less power and speed. It has 2 million parameters. YOLOv9e or 

YOLOv9 extensive is the opposite, made to handle larger datasets and work on more powerful 

computers. It boasts higher precision and has 58.1 million parameters (Yaseen 2024). Despite the 

vast differences in these models’ architecture, they perform similarly in looking for missing track 

bolts. If the focus is on enhancing performance speed using less power, YOLOv9t is the better 

option, while yielding lower precision and higher false positives. In cases where precision is a 

priority, YOLOv9t may be a more reasonable alternative.  

 

Table 4 shows all of the YOLOv10 model results. Out of these models, YOLOv10l 

showed the best performance among the variants of YOLOv10. While YOLOv10m, YOLOv10b, 

and YOLOv10l all share the same recall score, 0.8378, YOLOv10l has the highest scores in each 

category. Its TP rate is 62, which is tied for the highest rate at 62 with two other models, 

YOLOv10m and YOLOv10b. Next, it has a remarkably low FP rate at 6 FP, which is the lowest 

recorded out of every YOLO model. YOLOv10l is also tied for the lowest FN rate at 12 with the 

previously mentioned two models. Due to its low FP number, the models’ precision is 

exceptionally high at 0.9118, the highest out of all the YOLO models. The model’s recall score 

is the highest out of the YOLOv10 models but is tied with the previous two other models. 

Finally, it has the highest F1 score at 0.8732, indicating a good balance between precision and 

recall. 

 

Table 4: Results of the YOLOv10 Model Tests 

 

Model TP FP FN Precision Recall F1 

YOLOv10n 56 11 18 0.8358 0.7568 0.7943 

YOLOv10s 55 10 19 0.8462 0.7432 0.7914 
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YOLOv10m 62 23 12 0.7294 0.8378 0.7799 

YOLOv10b 62 26 12 0.7045 0.8378 0.7654 

YOLOv10l 62 6 12 0.9118 0.8378 0.8732 

YOLOv10x 61 12 13 0.8356 0.8243 0.8299 

 

Looking for missing track bolts, YOLOv5lu, YOLOv9t, and YOLOv9e all display the 

highest values for TP (67) and recall scores (0.9054). So, all these models perform similarly in 

predicting TP. To decide which is better, we need to look at their precision and F1 curves. In 

precision, YOLOv5lu scores higher at 0.8272 compared to YOLOv9t and YOLOv9e, which 

scores 0.7444 and 0.7701, respectively. Lastly, with an F1 score, YOLOv5lu triumphs again with 

its score at 0.8645, performing better than YOLOv9t and YOLOv9e at 0.8171 and 0.8323, 

respectively, signifying that YOLOv5lu has a better balance of precision and recall. This shows 

that YOLOv5lu is the best model, displaying high TP and recall, alongside having a high 

precision and F1 score. 

  

5. CONCLUSION  

 

 Our research shows the potential of employing machine learning algorithms to improve 

the safety of railways by detecting missing track bolts more efficiently, reliably, and securely. 

This research evaluated four YOLO models, YOLOv5, YOLOv8, YOLOv9, and YOLOv10, 

which exhibited incredible performance in detecting missing track bolts. YOLOv5lu had a recall 

value of 0.9054, showing the best performance in missing bolt detection among the tested 

models. Our findings show that machine learning models can effectively be utilized in railway 

defection detection, specifically for missing track bolts. 

 Future research will focus on assessing the model’s ability to detect when a missing bolt 

is absent to see how well these models’ accurate negative scores are. Also, testing out with 

models outside of the four. YOLOv11 was recently released and shown to have greater accuracy 

and better feature extraction. Other models outside the YOLO series, such as ResNet or Faster R-

CNN, should also be considered as they have been used extensively in object detection. 

Explainable AI can also provide insights into the models’ behaviors and see how future research 

tunes the model for missing track bolt detection.  
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