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ABSTRACT 

 

Traditional construction safety research primarily focuses on occupational hazards such as 

falls, equipment-related injuries, and environmental risks, while workplace violence, including 

firearm-related threats, is an underexplored area in construction safety research. High-profile 

cases, such as the tragic shooting on September 1, 2024, in Phoenix, Arizona, where a 48-year-

old construction worker was fatally shot and his 19-year-old coworker sustained life-

threatening injuries, underscore the importance of workplace violence mitigation in 

construction sites. To address firearm-related threats in construction, this study introduces 

RiskScanConstruction, a comprehensive dataset integrating the YouTube Gun Detection 

Dataset (YouTube-GDD) and the YOLO7 Power Tool Dataset. Designed specifically for 

construction safety applications, this dataset enables multi-class detection of people, firearms, 

and tools, distinguishing between similar-looking objects such as firearms and drills in 

dynamic, high-risk environments. The study evaluates the performance of various YOLO 

model configurations on RiskScanConstruction, with YOLOv11x emerging as the optimal 

model, achieving a precision of 92.0%, mAP@0.5 of 91.2%, and strong performance in 

detecting critical safety elements. The findings highlight the potential of advanced object 

detection technologies to proactively identify and mitigate construction site violence, 

enhancing both worker safety and site security. Furthermore, the RiskScanConstruction dataset 

and accompanying insights offer valuable contributions for broader safety-critical applications, 

including public security and industrial monitoring, setting the stage for future advancements 

in multi-class object detection systems. 

 

INTRODUCTION 

 

Construction sites are increasingly becoming settings for violent incidents, adding a new layer 

of risk to an already hazardous occupation (Fox 10 Phoenix, 2024). High-profile cases, such as 
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the tragic shooting on September 1, 2024, in Phoenix, Arizona, have highlighted the 

vulnerability of workers in these environments. In that incident, a 48-year-old construction 

worker was fatally shot, and his 19-year-old coworker sustained life-threatening injuries 

following an altercation while they were repairing a fence. The attacker initially left the scene 

only to return with a firearm, ultimately leading to a fatal escalation (Fox 10 Phoenix, 2024). 

Such incidents are not isolated. Similar tragedies have occurred globally and underscore the 

urgent need for improved security and safety protocols on job sites (ABC News, 2023). From 

Auckland, New Zealand, where a construction worker fatally shot two colleagues in July 2023, 

to the violent shooting at Delaware County Linen near Philadelphia in May 2024, the frequency 

of such incidents is rising (The Philadelphia Inquirer, 2024).  

Traditional safety measures in construction have primarily focused on mitigating 

physical risks, often overlooking the potential for violence among workers (Alzarrad et al., 

2021). Recent statistics indicate a worrying rise in gun violence incidents, such as the shooting 

of a construction worker in Stockton, California, in October 2021 and an altercation at an 

Amazon facility in South Carolina in December 2022 that escalated to gunfire (Dillard, 2023). 

These incidents reveal that construction workers are vulnerable not only to physical hazards 

but also to violent confrontations that can lead to severe injuries or fatalities.  

The need for a comprehensive approach to safety that includes strategies for preventing 

workplace violence is increasingly evident (Poulson et al., 2021). To effectively address these 

challenges, the integration of advanced technological solutions is essential. Object detection 

technologies, particularly those enhanced by machine learning and computer vision, can 

provide real-time situational awareness on construction sites (Hicks, 2023). However, existing 

object detection datasets, such as COCO and PASCAL VOC, are inadequate for the complex, 

dynamic environments typical of construction sites. They lack the necessary contextual 

richness and diversity of classes required for effective safety monitoring, particularly in 

detecting firearms and other critical safety elements (Richardson, 2023).  

To bridge this gap, this study introduces two novel datasets tailored for construction 

safety applications: the YouTube Gun Detection Dataset (YouTube-GDD) and the 

RiskScanConstruction dataset. The YouTube-GDD is designed to enhance the detection of 

firearms in varied contexts, while RiskScanConstruction integrates this dataset with the 

YOLO7 Power Tool Dataset to enable multi-class detection of guns, tools, and people in 

dynamic construction environments (Jamieson & Romer, 2021). This comprehensive approach 

aims to evaluate various YOLO model configurations on the RiskScanConstruction dataset, 

providing insights into their effectiveness in detecting critical safety elements in real-time 

(Corburn et al., 2022).  

This paper makes three key contributions: First, it introduces RiskScanConstruction, a 

robust dataset for safety-focused object detection, integrating guns, tools, and people in 

dynamic construction scenes. Second, it provides a comprehensive evaluation of several YOLO 

model variants on this dataset, including an analysis of class-specific performance. Third, it 

offers an insightful analysis of the trade-offs between model complexity, precision, and 

inference speed, delivering practical insights for deploying these models in safety-critical 

construction environments.  
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LITERATURE REVIEW 

 

Object detection is a key technology for identifying and localizing objects within images or 

video streams, which is particularly important in safety-critical fields such as construction, 

manufacturing, and surveillance. In these environments, it enables real-time monitoring to 

prevent accidents and ensure regulatory compliance. For example, on construction sites, object 

detection aids in identifying heavy machinery, workers, and hazards, reducing the risk of 

collisions or falls (Huang et al., 2020; Zhang & Guo, 2020). In surveillance, object detection 

is critical for monitoring unauthorized access and protecting personnel in high-stakes 

environments (Gheisari & Esmaeili, 2019). Workplace violence, including gun-related threats, 

has become a rising concern in construction, where stressful conditions and tight deadlines may 

increase tensions (Roy & Islam, 2019). Object detection systems can identify unauthorized 

individuals and alert security personnel, bolstering site safety (Zhang & Guo, 2020). 

Implementing these technologies within safety management systems can enhance regulatory 

compliance and safety culture, reducing accidents and improving worker protection (Kim, 

2018; Nouban & John, 2020; Mishra et al., 2022). The literature review section is divided into 

the following sections: 

Existing Gun Detection Technologies 

Gun detection technologies have progressed through advancements in machine learning and 

computer vision, particularly for surveillance. Current methods often employ deep learning, 

with convolutional neural networks (CNNs) being prominent for their capability to recognize 

firearms in real-time video feeds across diverse settings (Romero & Salamea, 2019; Srikar et 

al., 2023). These systems are generally trained on large datasets to identify guns under varied 

conditions, such as occlusions and different viewing angles (Rahman et al., 2022; Iqbal et al., 

2021). Techniques such as HAAR-like feature-based detection in CCTV images show promise 

in controlled environments but may struggle in dynamic settings due to fluctuating lighting and 

background conditions (Rahman et al., 2022). Edge computing integration has enhanced real-

time processing, facilitating faster responses to potential threats (Liu & HU, 2023). However, 

challenges remain, such as managing computational demands and achieving high accuracy in 

real-time scenarios (Liu & HU, 2023; Rahoo, 2023). While these technologies automate 

surveillance and reduce reliance on human operators, limitations include false positives and 

difficulty detecting firearms in unconventional positions (Srikar et al., 2023; Iqbal et al., 2021). 

Gun Detection Datasets 

Effective gun detection relies on high-quality datasets that reflect real-world complexities. The 

Gun-Detection-DB, a widely used dataset, contains images of firearms under varying 

conditions, including lighting and occlusions, providing foundational training data (Olmos et 

al., 2018; Srikar et al., 2023). However, datasets like Gun-Detection-DB primarily feature static 

images, lacking the dynamic contexts present in real-world scenarios, such as individuals in 

motion or crowded environments, which can limit model performance in complex situations 

(Moura et al., 2021). These datasets also often fall short in representing diverse firearm types 

and scenarios, thus impacting model robustness for broader practical applications (Iqbal et al., 

2021). Inconsistencies in annotations further affect performance, particularly in cases requiring 
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precise firearm localization (Moura et al., 2021). The need for comprehensive datasets that 

capture dynamic scenes, various firearm types, and contextual information is crucial for 

enhancing gun detection systems’ effectiveness. 

Dynamic Challenges in Gun Detection 

Real-world gun detection is challenging due to variations in firearm orientation, partial 

occlusions, and the movement of individuals and objects in dynamic environments. Changes 

in firearm position affect visibility and recognition by detection algorithms, and occlusions 

often lead to false negatives (Srikar et al., 2023; Iqbal et al., 2021). Furthermore, movement in 

crowded spaces can blur images, complicating accurate processing (Gu et al., 2022). These 

challenges underscore the need for datasets that reflect dynamic scenarios, such as YouTube-

Gun Detection Dataset (YouTube-GDD), which includes a range of contextual interactions to 

train adaptable algorithms (Gu et al., 2022). By incorporating diverse video scenarios, 

YouTube-GDD enables the study of firearm visibility under varying orientations and 

occlusions, promoting models that generalize well to real-world applications. The inclusion of 

contextual information, such as individual behaviors near a firearm, enhances detection 

accuracy when firearms are not fully visible, addressing a critical need for robust, real-world-

ready gun detection technologies (Gu et al., 2022). 

Motivation for Integrating YouTube-GDD and YOLO7 Power Tool Dataset 

Integrating the YouTube-Gun Detection Dataset (YouTube-GDD) with the YOLO7 Power 

Tool Dataset offers a comprehensive safety solution for construction sites by combining each 

dataset’s unique strengths. YouTube-GDD captures dynamic scenarios involving firearms, 

providing essential context for gun detection, while the YOLO7 Power Tool Dataset focuses 

on identifying power tools in construction settings. This integration enables a unified 

framework for multi-class detection—covering people, tools, and guns—enhancing situational 

awareness and safety monitoring on construction sites. A system capable of recognizing 

multiple classes in real-time allows for more efficient threat detection and quicker responses. 

For example, such a system can alert safety personnel if a nail gun is in use near someone 

carrying a firearm, heightening awareness and ensuring regulatory compliance. Moreover, 

training on a multi-class dataset improves model generalization to real-world scenarios by 

allowing it to learn interactions between objects, crucial for dynamic and cluttered construction 

environments where personnel and tools are in close proximity. 

Unique Contributions of RiskScanConstruction Dataset 

The RiskScanConstruction dataset advances construction safety object detection by addressing 

the limitations of single-class datasets. Traditional datasets often focus on isolated classes, 

limiting their applicability in multi-hazard environments like construction sites. 

RiskScanConstruction’s inclusion of people, tools, and firearms enhances contextual 

relevance, allowing for multi-class detection in dynamic, cluttered settings. This capability 

improves situational awareness for safety managers, enabling prompt responses to potential 

hazards. Models trained on RiskScanConstruction benefit from learning object interactions, 

essential in settings where tools and personnel are in close proximity, such as a worker 

operating a nail gun near others. By balancing representation across classes, the dataset reduces 
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overfitting, fostering robust models that generalize well to real-world conditions. 

Consequently, the RiskScanConstruction dataset offers a valuable, holistic resource for multi-

class object detection systems, significantly improving safety outcomes in construction 

environments. 

 

METHODOLOGY 

Dataset Preparation 

The RiskScanConstruction dataset was created by merging the YouTube Gun Detection 

Dataset (YouTube-GDD) and the YOLO7 Power Tool Dataset. Classes were unified into three 

categories: Class 0 (Person), Class 1 (Gun), and Class 2 (Tools). The dataset was divided into 

training (10,953 images), validation (1,213 images), and testing (1,127 images) sets, 

maintaining a balanced representation across classes. Annotation consistency was ensured 

through expert cross-validation, automated checks, and preprocessing steps, including 

standardizing image dimensions to 640x640 pixels. To enhance model generalization, data 

augmentation techniques such as random rotations, scaling, and flipping were applied. These 

augmentations simulated real-world conditions, improving robustness to variations in object 

positioning, orientation, and lighting. 

Model Selection 

The experiment evaluated eight YOLO model variants, each tailored to address specific 

detection challenges. YOLOv8n and YOLOv8x were designed as lightweight models, with the 

former optimized for edge devices and the latter for complex datasets. YOLOv9t and 

YOLOv9e incorporated enhanced feature pyramid networks to excel in detecting small and 

densely packed objects. YOLOv10n and YOLOv10x introduced transformer layers, enhancing 

contextual understanding and detection precision. Finally, YOLOv11n and YOLOv11x 

combined transformer networks with CNNs, offering high-resolution accuracy and 

adaptability, making them well-suited for safety-critical scenarios. 

Training and Evaluation 

Models were trained for 100 epochs with a batch size of 16, using early stopping to prevent 

overfitting. Evaluation metrics included precision, recall, mAP@0.5, inference speed, and F1 

score, emphasizing accuracy and real-time performance critical for safety applications. 

Training logs were captured and analyzed to refine model performance. The training was 

conducted on a single GPU with comprehensive metric tracking and automated logging to 

ensure consistency and reliability in results. These efforts supported the development of a 

robust YOLO-based detection system tailored for construction safety monitoring. Figure 1 

shows the research methodology flowchart. 

 

Figure 1. Methodology Flowchart 
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RESULTS AND DISCUSSIONS 

Overview of Results Across Models 

The performance of each YOLO variant was assessed using precision, recall, mAP@0.5, 

inference speed, and F1 score. Among the tested models, YOLOv11x demonstrated the highest 

precision (0.920) and mAP@0.5 (0.912), indicating strong detection accuracy across all 

classes. YOLOv8x also showed high recall (0.878) and mAP@0.5 (0.914), suggesting it is 

well-suited for capturing a broad range of relevant instances. However, the inference speed for 

YOLOv11x and YOLOv8x was lower than lightweight models such as YOLOv8n and 

YOLOv9t, which provided faster processing but at the expense of slightly lower mAP and 

recall. Table 1 shows the performance across models. 

Table1. Performance Metrics Summary Table 

Class-Specific Metrics and Visual Comparisons of Model Output 

Class-specific performance analysis revealed that most models achieved higher precision and 

mAP for the “Person” class, while detection of the “Gun” class, which requires finer detail due 

to object variability, benefited from models with transformer layers, such as YOLOv10x and 

YOLOv11x. YOLOv9t and YOLOv11n, with faster inference speeds, showed a slightly lower 

mAP in detecting “Tools,” indicating trade-offs between speed and class-specific detection 

accuracy. Test images were used to visually compare the outputs of various models, 

highlighting YOLOv11x as the top performer. YOLOv11x consistently delivered robust 

detection in cluttered scenes, exhibiting fewer missed detections and high-confidence scores, 

particularly for small or partially obscured objects. In contrast, YOLOv8n, despite its faster 

processing speed, occasionally missed detections in complex images with overlapping tools 

and persons. Visual examples of YOLOv11x outputs demonstrate its superior accuracy in 

challenging scenarios. Figure 2 below shows samples of the models’ outputs.  

Model Precision Recall mAP @ 0.5 Inference Speed 

(ms/frame) 

F1 Score 

YOLOv8n 0.885 0.838 0.889 0.667 0.861 

YOLOv8x 0.904 0.878 0.914 5.883 0.891 

YOLOv9t 0.891 0.831 0.900 0.915 0.861 

YOLOv9e 0.898 0.859 0.905 7.247 0.878 

YOLOv10n 0.883 0.822 0.888 0.699 0.852 

YOLOv10x 0.906 0.850 0.907 5.514 0.877 

YOLOv11n 0.898 0.834 0.894 0.647 0.864 

YOLOv11x 0.920 0.850 0.912 5.747 0.884 



 

Proceedings Paper Formatting Instructions – 7 –  Rev. 10/2015 

   

Figure 2. Samples of Models Outputs 

Precision and Recall 

As shown in Figure 3, the bar graph comparison of precision and recall highlighted YOLOv11x 

as the top performer in precision (0.920), while YOLOv8x scored highest in recall (0.878). 

Models with high precision, like YOLOv11x, offered lower false positive rates, critical in 

applications where false alarms are costly. However, higher recall in YOLOv8x indicated 

better performance in comprehensive hazard detection, important for safety-critical settings 

where missing a detection could pose risks. 

 

Figure 3. Bar Graph Comparison of Precision and Recall (Red for Precision and Green 

for Recall) 

mAP@0.5 and Inference Speed 

The line graph of mAP@0.5 across models showed YOLOv11x and YOLOv8x as the best-

balanced models, each with mAP above 0.9, indicating strong detection performance across 

diverse classes. Models like YOLOv9e and YOLOv10x also performed well, though their 

slower inference speeds could impact real-time applications. A speed chart indicated that 

YOLOv8n (0.667 ms/frame) and YOLOv10n (0.699 ms/frame) achieved real-time speeds 

suitable for resource-limited environments. YOLOv11x and YOLOv8x, while slower, offered 

superior precision and mAP, making them more suited to scenarios where detection accuracy 

takes precedence over speed, as shown in Figure 4. 
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Figure 4. Inference Speed for Models 

F1 Score and Optimal Model Selection 

Class-specific F1 score analysis showed that YOLOv8x maintained consistent performance 

across classes, especially in detecting “Person” and “Gun” instances. YOLOv10x demonstrated 

balanced F1 scores for “Tools” and “Person” classes, indicating suitability for construction 

settings where accurate tool detection is necessary. Based on all metrics, YOLOv11x emerged 

as the optimal model, balancing high precision (0.920), mAP@0.5 (0.912), and competitive F1 

score (0.884) with reasonable inference speed (5.747 ms/frame). While YOLOv8n and 

YOLOv9t offered faster speeds, YOLOv11x’s superior accuracy across classes and ability to 

capture intricate details make it well-suited for safety-critical applications that demand 

reliability over speed. Selecting YOLOv11x involves compromises, notably its slower 

inference speed compared to YOLOv8n. However, the improved detection quality justifies this 

trade-off in applications where accurate identification of potential hazards, such as guns and 

tools in construction, is prioritized over processing speed. 

 

CONCLUSION 

 

This study highlights the potential of advanced object detection technologies to enhance 

construction site safety by introducing RiskScanConstruction, a dataset specifically designed 

for detecting persons, firearms, and tools in dynamic, high-risk environments. The findings 

demonstrate that state-of-the-art YOLO models can effectively balance accuracy and 

computational efficiency, making real-time safety monitoring feasible. The results underscore 

the critical role of AI-driven detection systems in mitigating workplace hazards and preventing 

security threats. Despite these advancements, this research has certain limitations. The dataset, 

while comprehensive, does not yet account for a wider range of safety-related objects, such as 

helmets, safety barriers, and varied tool types, which are essential for broader safety 

assessments. Additionally, overlapping and occluded objects remain a challenge, affecting 

detection accuracy in cluttered environments. These limitations highlight the need for future 

research to expand object classes, integrate Vision Transformers (ViTs) and hybrid 

architectures, and refine real-time performance using techniques like model pruning and 
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quantization. Addressing these challenges will enhance the scalability and deployment of AI-

driven safety systems in construction and other high-risk industries. 
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