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Abstract—As concerns around climate change continue to
rise, accurate and efficient monitoring of our planet’s carbon
stocks is becoming increasingly important. The carbon stocks
of forests, one of the largest contributors to the Earth’s carbon
cycle, have historically been monitored through measurements
of Above Ground Biomass (AGB). These measurements are
traditionally done by hand over long periods of manual labor;
however, the recent rise of remote sensing methodology has
provided another avenue for AGB estimation. A large amount
of research has been conducted in the past decade regarding
a wide range of methods for remote AGB estimation. Many
of these methods, however, require large amounts of data to be
gathered in order to be conducted in areas not recently analyzed.
This study aims to test the feasibility of remote AGB estimation
in an environment with low access to existing ground-truth data
in the Appalachian area and develop reliable methods for AGB
estimation in smaller-scale plots. These estimations are built off
of existing equations relating tree height, canopy diameter, and
genus directly to biomass. Through the use of drone imagery
and machine learning, we are currently building a dataset that
would allow rapid identification of tree genus by canopy on an
image-by-image basis. Combining this with existing methods of
tree measurement using public satellite LiDAR data, our goal
is to develop both a benchmark dataset and trained machine
learning model that could estimate tree biomass without the
need for specialized equipment.

Index Terms—Above Ground Biomass, Deep learning, Ma-
chine Learning, Classification

I. INTRODUCTION

While making up a small portion of our overall atmo-
sphere, carbon dioxide is our planet’s primary greenhouse
gas; keeping consistent levels of CO2 is vital for maintaining
livable environments across the globe, as it directly relates
to the amount of heat trapped within our atmosphere. The
amount of greenhouse gas in the atmosphere is maintained by
the Earth’s natural carbon cycles, wherein plants take in CO2

through photosynthesis and effectively release that carbon
back into the atmosphere when they die. Forests are one of
the primary contributors to this cycle, capable of taking in
2-4 Gt of carbon each year and acting as massive carbon
sinks [1]. Consistent monitoring of forests allows us to keep
track of the planet’s carbon pool by looking at increases
and decreases in observable biomass, and thus the amount
of carbon being stored within that biomass.

The monitoring of carbon stocks continues to gain impor-
tance due to the increased production of carbon dioxide into
the atmosphere by human activity. In recent decades, the rate

at which carbon dioxide has been entering the atmosphere is
higher than any point in the past 80,000 years and continues
to rise in the present day [2]. This is primarily a result of
the common burning of fossil fuels, which releases large
amounts of CO2 into the atmosphere as a primary byproduct.
Additionally, increased deforestation has made it continually
more difficult for this carbon to be captured. These factors
combined have led to concerningly high levels of atmospheric
carbon, which is a primary contributor towards our current
global warming crisis. Biomass monitoring of forests, then,
is an important way for us to keep tabs on the state of
global warming as it becomes increasingly impactful on
environments across the planet.

Forests are comprised of many types of biomasses. Ac-
cording to the Intergovernmental Panel on Climate Change
(IPCC), there are five primary types of biomasses which
act as significant carbon pools: above-ground, below-ground,
litter, woody debris, and soil organic matter. Of these five,
above-ground biomass (AGB) accounts for between 70% to
90% of the total biomass in forests [3]. Besides being the
most common, AGB is also extremely volatile and most
at risk from immediate environmental factors. To accurately
monitor AGB, measurements must be taken frequently and
repeatedly given that factors such as deforestation or forest
fires can cause drastic changes in total biomass [4].

In recent years, the focus of AGB estimation research has
begun shifting away from traditional methods and moving to-
wards techniques that are more hands-off. Historically, AGB
has been measured by-hand in plots through ground-based
measurements. While effective, these methods are limited by
both ground-coverage and speed of data collection. Remote-
sensing approaches provide a massive increase in the amount
of data that can be gathered at once, and the majority of this
data can be processed very efficiently compared to hands-on
methods [5]–[7]. Research on these approaches tends to rely
on extensive existing data for the given study area, meaning
research conducted in comparatively undocumented regions
- or with low access to data - cannot easily approach these
more efficient methods.

Our aim in this paper is to investigate the feasibility of
remote AGB estimation in an environment with low access
to existing ground-truth data and develop reliable machine
learning methods for AGB estimation in smaller-scale plots.
The key contribution of this paper is (i) reviewing the
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to train the machine learning models, and (iii) evaluating the
performance of the machine learning models on the case area
in Appalachian area. The initial results show that machine
learning algorithms can be used to identify the tree types by
using drone and satellite images.

The rest of the paper is organized as follows: Section II
summarizes the exiting works. The system model and dataset
creation are explained in Section III. The results and our
discussion are included in Section IV, and finally Section V
has the concluding remarks and the future works.

II. DEEP LEARNING

Image processing through deep learning is a highly ef-
fective method for achieving impressive accuracy in object
detection tasks, provided that a well-constructed training
dataset is available. The depth and specifics of the neural
networks depend on the specific goal of the network, with
networks that classify single trees being significantly smaller
than networks which both classify and disseminate trees.

The simplest deep learning approach would be to develop
a network which takes a tree that has already been dis-
seminated, such as by LiDAR, and classifying its species.
This approach has been proven effective in other domains
of image processing, with one of the most famous examples
being the MNIST numerical digit dataset [8]. One of the
most effective network architectures for this approach are
convolutional neural networks, and more specifically a sub-
category known as a residual network [9]. The architecture,
also known as a “resnet” stacks several convolutional layers
on top each other, like other convolutional networks do, while
also implementing shortcut pathways that skip over layers, to
prevent errors that can be caused by too deep of networks.
This approach has been applied to tree species classification
with an accuracy of 80% by authors Natesan et al [10].

The networks utilized for models that delineate tree
canopies are far more complex in their construction. These
networks are very desirable, due to their ability to identify
and classify trees quickly once properly developed. However,
the development of these networks, along with just classifi-
cation networks, can be a difficult process. In some cases,
an effective deep learning model can require thousands of
images, if not tens of thousands of images. This is especially
difficult in a supervised learning approach, as it necessitates
that the images used to train these networks are labeled
in some manner, such as through manual review. These
networks have been proven effective for tree delineation by
several authors, with a notable example being “DeepForest”
by Weinstein et al. [11]. This network was developed as
a python library, allowing other researchers to build upon
their work and specialize the network for other trees by
providing more training data, through a process known as
transfer learning [12].

DeepForest represents its tree detections through rectan-
gular bounding boxes, which can be slightly inaccurate for
more irregular canopy shapes. This is corrected by networks

which produce multipoint polygons. Tree segmentation ap-
proaches are common among point cloud-based delineation
approaches, but it is a more uncommon approach for image-
based networks, due to the added complexity. One of the most
generically popular bounding box deep learning networks is
that of YOLO, which has been extended to produce polygons
instead [13].

III. SYSTEM MODEL AND DATASET

The previous works [14] shows that AGB and DBH can be
estimated based on tree properties such as tree height, canopy
area, and genus. The following equations are examples of
estimation of AGB and DBH:

AGB = 0.058P ∗ ((DBH)2 ∗H)0.999 [15]

DBH = 13.866 + 0.509C

where P is density of genus, DBH is trunk diameter at breast
height, H is tree height, and C is canopy area.

While these equations were created for the purpose of
expediting by-hand AGB estimation, they lay a groundwork
for easier approaches in remote sensing scenarios. In the
case of our remote sensing-based research, the three required
pieces of data can be split into two categories: spatial (height
and canopy area) and visual (genus). While genus itself is
not a visual attribute, multiple approaches for estimation
utilize optical drone data to train machine learning models to
identify genus based solely on visuals [6], [7], [16]. These
approaches often make use of non-visible wavelengths of
light from multispectral sensors; due to the lower availability
of such sensors compared to standard red-green-blue (RGB)
sensors, we aim to test the validity of standard RGB imagery
as a means of estimation instead. For similar reasons, this
study will also not be making use of our own remote spatial
data, such as LiDAR, for tree measurements; we will instead
be sourcing LiDAR data from public databases as a means for
remote measurements. As both our LiDAR data and images
will store geographic information, the two sources of data can
be combined to produce a testable final result. The ground-
truth data is still in the process of being collected to test both
forms of data. The reliability of these methods separately and
combined will be tested as data continues to be gathered.

All hand-gathered data for this study was taken from the
region seen in Fig. 1 slightly south of Saint Albans, WV
(38.327417N,-81.832858E). The area is primarily covered
in dense forests but is bisected by a road with multiple
branching residential areas. With a mostly flat elevation
and even split between residential and forested areas, this
region is ideal for testing reliability in multiple types of
environments. The ground-truth data was gathered near the
edges of these residential areas due to ease of access, and
environments were made sure to include non-tree objects
for the sake of analyzing potential false positives such as
buildings or grass which may interfere with the predictive
models.



Fig. 1: Visualization of study area.

A. LiDAR

As part of our investigation, we also investigated LiDAR
based methodologies for canopy isolation. Both a digital
surface model and elevation model of the study area were
sourced from the USGS 3D Elevation Program datasets
through OpenTopography at 10m resolution. Both rasters
were cropped to fit our study area as well as warped to match
their Coordinate Reference System (CRS) using QGIS 3.36.3.
A Canopy Height Model (CHM) was generated from both
rasters by subtracting the bare-earth elevation model from
the digital surface model using a script written in R. The
resulting raster represented only the heights of objects from
where they stood on the surface. 10m resolution Sentinel-2
satellite imagery was also sourced through OpenTopography
of the same area so that results could be overlaid onto a
corresponding visual map for analysis [17], [18].

ForestTools, an R library designed to analyze remote forest
data, was used for canopy detection and processing. We
first generated treetop estimations using the ‘locate trees’
Method provided in ForestTools with our CHM as input
data. This point data was then used in the ‘mcws’ (Marker-
Controlled Watershed Segmentation) method to create poly-
gons representing estimations of entire crowns on a tree-by-
tree basis. These polygons were exported as a singular shape
file and transferred into QGIS to overlay onto a satellite
image representing our study area. Analysis of this data has
currently only been conducted visually in sparse areas to
ensure that only trees were being segmented in areas dense
with clear false positives. Due to the limited ground-truth
data, we have not yet been able to test the reliability or
accuracy of these results in anyway regarding measurements
of the trees themselves. To measure the accuracy of these
results in the future, the estimations generated by ForestTools
will be compared directly to the real-world measurements in
their respective plots, both in terms of canopy radius and the
accuracy of their heights based on the generated CHM [19],
[20].

Genus Label Color Total Labels
Hickory Blue 11
Linden Purple 3
Locust Black 1
Maple Red 39
Oak Yellow 80

Poplar Gray 8
Walnut White 2

TABLE I: Label information across all plots, including label
colors and total number of labeled canopies per genus.

B. Deep Image Processing

With the subset of our image dataset we have collected so
far, we have been investigating two different deep learning
techniques, a small residual network for individual classifi-
cation and transfer learning on top of DeepForest for canopy
isolation, with the possibility of classification. Our current
tests have shown that approximately 50 labeled tree samples
per class is not sufficient to perform consistent classification,
even when performing binary classification with trees only
being considered oak or not oak for this test. Our dataset
currently comprises 144 labeled drone images from 6 sites
with the genus for each tree identified in person at each site.
The number of trees as well as classes can be viewed in
Table I. Once having enough samples, we can use image
augmentation techniques to increase the size of the training
dataset.

We will also evaluate the effectiveness of transfer learning
on DeepForest once we have accumulated a sufficient number
of image frames. For the residual network, we utilized small,
isolated tree images. However, DeepForest necessitates larger
images with bounding box annotations, with each image
containing multiple trees. This approach will allow us to
leverage the full potential of DeepForest’s capabilities in
detecting and classifying trees within a more complex and
realistic context [11].

By comparing the performance of our residual network
with DeepForest, we aim to determine the most effective
method for tree identification and classification. This com-
parison will provide valuable insights into the strengths and
limitations of each approach, guiding us in refining our
models for better accuracy and reliability.

One challenge in training isolation models with our dataset
is that not every tree in a given frame is accessible by foot for
manual verification. If these trees are left unlabeled during
training, the results may be negatively impacted. There are
several strategies to address this issue. One approach is to
crop images to exclude unlabeled trees. Another method is
to remove these trees using image editing software, though
this carries the risk of introducing visual errors. Finally, these
trees could be identified in the image by human observation,
although this is less accurate than the manual ground truth
method we have utilized.



Fig. 2: Examples of labeled drone images taken within study
area.

IV. RESULTS AND DISCUSSION

A. LiDAR

With our current methodology and data sourcing, the
results appear to be quite inconsistent. When focusing solely
on treetop estimations, false positives are prevalent, and
single trees are often mistaken for multiple smaller canopies.
While the process of crown segmentation helps mitigate these
issues, it introduces very noticeable gaps where significant
portions of the forested areas are not accounted for by the
predictions. While our current results are based solely on
visual analysis due to insufficient testing data, the existing
methods do not yet appear reliable for precise canopy mea-
surement.

While the shapes of the canopy polygons are not neces-
sarily critical for estimations, we were pleasantly surprised
by the model’s accuracy in pinpointing canopy locations
in open regions. The points corresponding to the generated
polygons almost always lie within a unique canopy and
rarely appear on non-tree objects. While the current results
do not yet meet the accuracy required for AGB estimation,
they do demonstrate the potential of LiDAR as a viable
measurement tool. Future testing, once equipped with the
appropriate data, will primarily focus on determining the
level of detail required to meet the specifications of our AGB
equation. For instance, if only the rough radius of a canopy
is needed, we could derive this value from the size of the
polygons for each tree. However, if no level of simplicity
proves accurate with our current data sources, we may need
to seek alternative LiDAR data sources to achieve the desired
level of accuracy.

B. Image Processing

For an initial test of our dataset, we conducted a binary
classification task using a smaller version of the Xception
network, as described by François Chollet [21]. This model
uses the keras framework for operation, with the language
being python 3 [12], [22]. We trained the model for 250
epochs on image patches from among our dataset, with 104
images being used for training and 15 images being used
for testing. Additionally, a stock image of an oak and a
maple were added to best test sets. To improve results, we
duplicated every image in the dataset and then applied the
following augmentations to the duplicated half: Random Flip
(Horizontal), Random Translation (plus or minus 20%), Ran-
dom Brightness (plus or minus 30%), and Random Rotation
(maximum 10%). For this test, due to the large amount of
oak and maple, only images of those two classes were used
to test or train the model. Three different model epochs
were tested, and for each of them 10/11 oaks and 6/6 were
correctly identified for an average accuracy of 94%. Notably,
the only image that was falsely identified was the oak stock
image. It is very likely that this stock image was not the
exact type of oak native to this area, therefore it was not
properly detected. While these results are very positive, it
is important to note that the test images were taken in the



Fig. 3: Sample of LiDAR treetop estimations (white points)
and canopy segmentation (purple masks) over residential
area.

same geographic locations and under similar conditions as
the training images. Consequently, the accuracy is likely to
decrease when more challenging samples are introduced. This
training was repeated with poplar and hickory combined
into a third class, “neither,” which increased the training
set by 16 images and the test set by 3 images. This test
correctly identifies 11/11 oak, 5/6 maple, and 0/3 neither, for
an average accuracy of 80%. These results showed that 10-
20 images of each class is not nearly enough for recognition,
and that two classes cannot be combined well unless they
are notably similar. However, the addition of a third class did
not heavily reduce the performance of the other two classes,
though this may change if the third class performs better.

V. CONCLUSION AND FUTURE WORKS

A. Conclusion

Although we have not yet completed the development
of methods for remote Above-Ground Biomass (AGB) es-
timation, the approaches tested thus far have demonstrated
both potential advantages and limitations in data-rich envi-
ronments. Our machine learning techniques for genus iden-
tification have shown promising results with the limited data
available. However, as additional classes are introduced, the
reliability of these results remains uncertain. It may become
necessary to incorporate more variables into our predictions
to achieve high accuracy across diverse environments as the
study progresses.

Conversely, satellite LiDAR data has yielded more promis-
ing outcomes than anticipated, even with relatively sparse
data. While canopy segmentation has not proven reliable
using only publicly available data, canopy locations in open
areas have been identified with a seemingly high degree of
accuracy. As we continue to gather more data, we antici-
pate that the accuracy and reliability of both methods will
improve.

B. Future Works
Moving forward, our long-term objective is to continuously

gather and annotate data to enhance the accuracy of our
deep learning processes. We will persist in testing classifi-
cation and canopy isolation models in parallel, with plans to
compare the performance of various model architectures on
the same dataset. This comparison will help us determine
whether an all-in-one detection and classification model
is more effective, or if separate models for isolation and
classification yield better results.

Throughout the year, the color of the leaves will change
significantly, with different trees changing colors at various
times. To account for this, we aim to collect data at multiple
intervals over the coming months, incorporating the time
of year as a feature in our classification model. We will
consider our efforts successful if we achieve at least 90%
class accuracy on a test sample of at least 100 images and
five classes.
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