
Development and Evaluation of an AI-Enhanced
Python Programming Education System

Eric Zabala and Husnu S. Narman
Department of Computer Sciences and Electrical Engineering, Marshall University, Huntington, WV, USA

Email: zabala@marshall.edu, narman@marshall.edu

Abstract—The integration of Artificial Intelligence (AI) in
education has shown promising potential to enhance learning
experiences and provide personalized assistance to students.
However, existing AI-based educational tools often exhibit
limitations, including inconsistent feedback, limited adaptability
to diverse learning needs, and difficulties in delivering real-
time and accurate assessments. These limitations restrict the full
effectiveness of AI in supporting students’ educational journeys.

In this paper, we present the development of an AI-based
Python programming education system that integrates a Chat-
bot for student assistance, an automated grading system for
feedback, and an entrance exam feature that suggests chapters
and sections for review. The Chatbot and grading system
employs GPT-3.5 Turbo, leveraging its extensive knowledge
base, cost-effectiveness, time efficiency, and adaptability to
various programming queries, which enhances student engage-
ment. Although the system underwent interactive testing and
continuous improvements, the development process encountered
difficulties in maintaining consistent AI feedback and enhancing
real-time performance. Users can take quizzes, receive grades,
obtain personalized feedback, and get course recommendations.
The grading system achieved 28/30 consistency with its output
while the course recommendation system achieved 26/30 con-
sistency with its outputs. The results indicate that while the
AI-based system aids in learning programming by providing
instant feedback and recommendations for improvement, its
effectiveness is limited. This project underscores the potential
of AI to enhance educational tools and sets the stage for further
advancements in AI-driven education systems.

Keywords—Artificial Intelligence, Python, Education, Ad-
vanced Learning Technologies

I. INTRODUCTION

Artificial Intelligence (AI) is a frequent topic of discussion
in modern times. Some of the Large Language AI Models
(LLMs) such as ChatGPT have shown their astounding capa-
bility by passing the German State Examination in Medicine,
passing the Bar Exam, and achieving a passing score on
a computer science exam [1]–[3]. These feats demonstrate
LLMs’ versatility and potential in various fields, including
education. Building on these capabilities, this paper presents
the development and evaluation of an automated Python
education system that we created, leveraging OpenAI’s APIs
to enhance learning through AI-driven feedback and per-
sonalized assistance. There have been many other programs
created to teach Python to beginners using games and similar
interactive ways [4]–[6]. Some of the education websites
such as Tynker [4] have been specifically designed for K-12

students. There are interactive websites such as Codecademy
[5] that have compilers built in so that the learners can have
an opportunity for practice. There are also other educational
websites such as Khan Academy [6] that prepare students
for entrance exams and help guide students in a direction
of learning. Currently, none of these have quizzes where
students will get personalized feedback from, or have a way
to ask questions related to the course they are taking before
they registered for courses.

In this paper, we aim to develop a Python learning platform
suitable for all ages. The platform will interact with users
before they begin courses to accurately assess their skill level
and recommend chapters based on their experience.

The key contributions of this paper are: (i) implement an
AI-driven feedback system that interacts with users in real-
time, providing personalized suggestions and improvements
based on their input, (ii) develop a monitoring system to
evaluate the AI API’s performance over time, focusing on
consistency and reliability, and (iii) create a feedback loop
that continuously refines the AI’s algorithms based on user
interactions and feedback. The results indicate that although
the AI-based system helps in learning programming by offer-
ing instant feedback and suggestions, its overall effectiveness
is limited.

The rest of the paper is organized as follows. In Section
II, we have discuss how the system is developed. In Section
III, the implementations of the application as well as demon-
strating the system have been explained. Section V compares
the application to other previous works that teach the same
subject. Section IV discusses the results, and finally Section
VI contains the conclusion and remarks for future works.

II. DEVELOPMENT

In this section, we will explain the details of the developed
platform in terms of utilized tools, contents, and design.

A. Tools Utilized

To ensure the system is beginner-friendly, we decided that
a web browser-based platform would be the most acces-
sible. The system utilizes HTML5 for display, JavaScript
to enhance user-friendliness, and Python for the back-end
operations and AI API connections. After evaluating various
options, we concluded that integrating the OpenAI API would
be the most suitable approach for the project. Fig. 1 and
Fig. 2 shows a test that is conducted on both OpenAI’s API979-8-3315-4090-6/24/$31.00 ©2024 IEEE

and Google’s API using the same prompt. As demonstrated in
Fig. 1 and Fig. 2, OpenAI responses are more appropriate for
our purpose. For hosting the system, Amazon Web Services
(AWS) is decided to be used as this aligns with current
industry standards.

Fig. 1: Example of a test done for API suitability on Google’s
API.

Fig. 2: A suitability test on OpenAI’s API.

B. Content Overview

The application is structured into six chapters, with chap-
ters one and two fully implemented. Each chapter is subdi-
vided into sections to enhance the course’s navigability and
assist students in comprehending difficult concepts.

In chapter one, the first section details the installation of
Python and an Integrated Development Environment (IDE)
on a Windows system, as our resources were limited to
Windows operating systems. Following this, two sections
introduce the fundamental aspects of Python. Chapter two
explores the basic types of variables. The initial section
provides an overview of each type, while the subsequent
sections delve deeper into their specifics. This chapter also
includes a quiz designed to assess the learner’s understanding
of the material covered in chapters one and two.

Moreover, the system incorporates an entrance exam where
users can submit answers and explanations. We permit blank
responses, acknowledging that it is acceptable to lack knowl-
edge in certain areas. The exam encompasses a range of
topics extending to Chapter 6, which addresses lists, list
operations, and list functions. Although chapters 3 through
6 have not been added due to time constraints, the entrance
exam still references these chapters and recommends them
for review to ensure a comprehensive evaluation.

C. Design Challenges

The primary objective of the system is to implement a
hands-off approach to teaching, allowing it to autonomously
grade, correct misconceptions, answer questions, and help
users identify their knowledge gaps. This approach aimed to
prevent the unnecessary reteaching of concepts that students
already understood. To achieve this, we needed to identify
a system capable of performing these tasks efficiently. After
thorough testing, we evaluated both OpenAI’s and Google’s
APIs. Ultimately, we choose OpenAI’s APIs due to their
ability to consistently format responses, which is a critical
requirement for our system (see Section II-A for prompt
testing.).

One of the initial challenges we encounter is ensuring that
the chapter quizzes produced standardized grades. To address
this, we collected data from users, graded their responses,
and provided personalized feedback. Additionally, we estab-
lished a grading scale for each question, which helped in
correcting any inconsistencies in the grading process. An-
other significant challenge is achieving uniform outputs from
the Entrance Exam. This required numerous iterations and
adjustments to the prompt. Through persistent refinement,
we are able to achieve reliable and consistent results from
the Entrance Exam, ensuring that it accurately assessed the
users’ knowledge and understanding.

III. IMPLEMENTATION

In this section, we provide a detailed explanation of each
component of the application [7] and outline specific source
code specifications [8].

A. Home Page

Fig. 3 shows the home page of the application. Users can
take the entrance exam by logging with their codes, select
the chapter/section want to review, or take the chapter quiz
from drop-down menu of each chapter.

Fig. 3: Home page for the application.

B. Entrance Exam

Fig. 4 shows the login screen for the Entrance Exam. This
is where the user types in their ID an example of an ID would
be John#1234. This is so the system can file each user’s

Fig. 4: Log-in screen for the Entrance Exam.

inputs into a JSON file. Then, the JSON file is then given to
the API for grading and course review recommendations.

Fig. 5 shows one of the questions from the exam that is
used to test the students’ knowledge of Python. The system
requires the user to give an answer and an explanation to get
the question correct. This helps prevent guessing and a false
belief of understanding [9].

Fig. 5: An example of a question within the entrance exam.

Lastly, Fig. 6 displays a review recommendation for a
student who got most of the answers and explanations correct
on the exam.

C. Course Content

Fig. 7 shows how one of the lessons looks like. The
system features many aspects to assist with engagement.
Student engagement is critical for successful learning [10].

Fig. 6: Output from Entrance Exam, showing the chapter and
section recommendations.

This includes an embedded compiler from Trinket.io using
Python [11]. This allows the student to see how the code
they are learning about works as well as gives the student
the opportunity to test other ideas on the compiler without
needing to download and install anything.

Fig. 7: An example of a common layout of a lesson within
the course.

D. Chatbot

Fig. 8 shows how the chatbot is integrated into the course
content for students who have Python-related questions. It
can provide explanations and guidance within the scope of the
course. The learners or newcomers struggling to formulate
questions could potentially receive helpful information by
simply expressing their confusion or area of difficulty to
the chatbot. The system does not answer non-Python-related
questions, instead, the system will reply with “Sorry, That is
outside the scope of this class.”

E. Chapter Quiz

Quizzes can be a powerful tool to assist students learn [12].
Feedback also has a powerful influence on learning as long
as the student can understand the feedback [13]. Therefore, in
the quizzes, we aim to provide consistent feedback for each

Fig. 8: The Chatbot answering a question about an array in
Python.

question according to users’ answers and explanations. One
of the main issues we ran into was having the system have a
consistent formatted output. We tried having the system take
in the questions, answers, and explanations giving them a
grade and feedback. The system gives constructive feedback
even when a student gives a correct answer as shown in
Fig. 9.

Fig. 9: Feedback to a student for a correct answer.

Fig. 10 shows an example of a student getting an answer
mostly correct. The system can also understand when a
student gives an answer that answers what the code does
but does not answer the question correctly (see Fig. 11).
The feedback helps students get a deeper understanding of
the information they are trying to learn [14]. The feedback
demonstrates that the application assesses the degree of
correctness in student answers, rather than simply a binary
correct/incorrect evaluation.

F. User Feedback

The system includes a comprehensive feedback section
where students can provide detailed input to enhance the
system over time or correct any errors they encounter. This
feedback mechanism is crucial as it allows for continuous
improvement and refinement of the system. By gathering
insights from users, the system can adapt to better meet
their needs, address any issues promptly, and ensure a more

Fig. 10: Feedback to a student for a mostly correct answer.

Fig. 11: Example of a student giving an incorrect answer to
the question but demonstrating they still know what the code
is doing.
effective and user-friendly experience. Encouraging students
to share their thoughts not only helps in identifying areas
for improvement but also fosters a collaborative environment
where users feel valued and heard [14].

IV. RESULTS

The training data for the system was meticulously collected
from 18 individuals aged between 20 and 68 years. This
diverse group provided a comprehensive dataset consisting
of 30 questions, identical to those featured in the entrance
exam. Initially, the first five questions were utilized to train
the system, which was subsequently integrated into the quiz
module. As edge cases emerged, the system was refined to
address these anomalies.

Following these refinements, the quiz underwent extensive
testing. Each question was tested 30 times using uniform
answers and explanations. Questions 1, 2, 4, and 5 consis-
tently yielded the same grades, demonstrating the system’s
reliability. However, question 1 produced a different answer
on two occasions, resulting in a consistency rate of 28 out of
30 instances. Despite these minor inconsistencies, the overall
feedback remained stable, and the core meaning of the work
is preserved. Figs. 12 and 13 illustrate the consistent output
from the system.

For the entrance exam, the system was executed 30 times.
This number was strategically chosen due to the associated

Fig. 12: Shows the top portion of the grading screen after
the quiz.

costs and token usage of each test. The initial results indicated
that the system provided standardized results 20 out of 30
times. After implementing further improvements, the consis-
tency rate significantly increased to 26 out of 30 instances,
showcasing the system’s enhanced reliability.

The system’s performance is also evaluated in terms of
execution time. The fastest execution was recorded at 3.95
seconds, while the slowest took 10.36 seconds, with an
average execution time of 5.15 seconds per run. Notably, the
system made the same mistake twice by adding section 4.6
and incorrectly marking question 29. In two other instances,
no questions were marked wrong, and chapter 2.2 was rec-
ommended. The first instance removed chapter 2.4, indicating
all questions were correct, while the second instance replaced
chapter 2.4 with chapter 2.3 but still indicated the student
mostly passed the exam.

These results underscore the system’s ability to adapt
and improve over time. The feedback mechanism played a

Fig. 13: Shows the bottom portion of the grading screen after
the quiz.

crucial role in identifying and addressing errors, leading to a
more robust and reliable application. Continuous testing and
refinement have ensured that the system not only meets but
exceeds the expectations of its users, providing a uniform
and efficient learning experience.

V. RELATED WORKS AND DIFFERENCES

There exists a substantial body of work examining the
consistency of AI responses. In [15], the authors concluded
that ChatGPT exhibited inconsistencies in its outputs. Our
findings support this conclusion; however, we observed that
the application of APIs and prompt engineering significantly
enhanced the consistency of the results.

Furthermore, a study conducted in early 2023 asserted that
AI systems should be regarded solely as tools and lack the
merit to replace educators [16]. Our research aligns with this
perspective, and it indicates that while current AI systems
are not yet capable of supplanting human educators, the
continuous evolution of APIs holds considerable promise for
future applications.

The integration of advanced APIs and refined prompt
engineering techniques has demonstrated potential to mitigate
the inconsistencies inherent in AI-generated responses. This
approach not only improves the reliability of the outputs
but also enhances the overall user experience. As these
technologies evolve, they are likely to play an increasingly

pivotal role in educational settings, augmenting traditional
teaching methods rather than replacing them.

A. Khan Academy

Khan Academy offers a structured approach to learning,
with courses divided into smaller sections and supplemented
by instructional videos and interactive components that test
student knowledge. However, while Khan Academy provides
these interactive elements, it lacks integrated exams for
beginner Python lessons and does not offer personalized
feedback during learning. In contrast, the Python education
system we developed not only includes quizzes at the end
of each lesson starting from chapter two but also features
embedded compilers within the lessons, allowing students
to experiment with code in real-time. Additionally, unlike
Khan Academy, our system incorporates a built-in chatbot
that enables students to ask Python-related questions directly
within the course, providing instant, tailored assistance that
adapts to their individual learning needs [6].

B. Tynker

Tynker provides an engaging learning environment with
interactive Python lessons and games designed for younger
audiences. While it offers a subject-based structure that is
easy to follow, it lacks real-time support for students who
encounter difficulties during lessons. Additionally, progress
in some courses may be hindered by technical issues, such
as non-functional games, and the platform requires a sub-
scription to access certain features. In contrast, our Python
education system is designed to be fully accessible and user-
friendly, offering real-time support through an integrated
Chatbot that answers Python-related queries as they arise.
Furthermore, the system includes quizzes that provide im-
mediate feedback, helping students to understand and correct
their mistakes instantly. The addition of an entrance exam
in our system also allows students to identify areas where
they need further review, offering a more personalized and
adaptable learning experience compared to Tynker [4].

C. Codecademy

Codecademy offers a variety of interactive lessons and
an AI chatbot that can assist students with their learning;
however, access to these features often comes at a cost, and
the number of questions users can ask the chatbot is limited
without a subscription. Additionally, although Codecademy
offers interactive lessons with built-in code testing, many of
their Python courses and the accompanying quizzes require
payment. In contrast, our Python education system is entirely
free to use, providing students with unlimited access to its
features, including the Chatbot, which can answer up to
five questions at a time before needing a reset—without
any additional costs. Our system also distinguishes itself by
offering comprehensive quizzes at the end of each lesson,
ensuring that students can reinforce their knowledge and
receive personalized feedback without financial barriers [5].

VI. CONCLUSION AND FUTURE WORKS

In this paper, we present the development and evaluation
of an AI-based Python education system designed to enhance
learning through interactive quizzes, real-time feedback, and
a built-in Chatbot for answering Python-related questions.
The system demonstrated promising results, achieving a
28/30 consistency rate in quiz grading and a 26/30 consis-
tency rate in entrance exam recommendations. These findings
suggest that the system is effective in providing personalized
learning experiences, though some inconsistencies remain.

However, the system is not yet ready for wide-scale
deployment due to these identified inconsistencies and the
need for further refinement. Additional work is required to
improve the reliability of the system’s feedback mechanisms
and to expand the course content to cover all six planned
chapters. Future efforts will focus on fine-tuning the AI com-
ponents to ensure more standardized outputs and exploring
opportunities for incorporating more advanced features that
further support student learning. With these improvements,
the system could eventually be deployed in an educational
setting with appropriate oversight.

REFERENCES

[1] L. B. Jung, J. A. Gudera, T. L. Wiegand, S. Allmendinger, K. Dimi-
triadis, and I. K. Koerte, “Chatgpt passes german state examination
in medicine with picture questions omitted,” Deutsches Ärzteblatt
International, vol. 120, no. 21-22, p. 373, 2023.

[2] D. M. Katz, M. J. Bommarito, S. Gao, and P. Arredondo, “Gpt-4 passes
the bar exam,” Philosophical Transactions of the Royal Society A, vol.
382, no. 2270, p. 20230254, 2024.

[3] S. Bordt and U. von Luxburg, “Chatgpt participates in a computer
science exam,” arXiv preprint arXiv:2303.09461, 2023.

[4] Tynker. (2024) Intro to python course. Accessed: 2024-03-15.
[Online]. Available: https://www.tynker.com/courses/python-1-jungle-
run-adventure

[5] Codecademy. (2024) Learn python. Accessed: 2024-08-09. [Online].
Available: https://www.codecademy.com/catalog/language/python

[6] K. Academy. (2024) Accessed: 2024-07-08. [Online]. Available:
https://www.khonacadomy.com

[7] (2024) TACo about Python. Accessed: 2024-08-10. [Online].
Available: https://www.taco-about-python.com/

[8] (2024) AI-based-education-system. Accessed: 2024-08-10. [Online].
Available: https://github.com/redportz/AI-based-education-system

[9] P. McKenna, “Multiple choice questions: answering correctly and
knowing the answer,” Interactive Technology and Smart Education,
vol. 16, no. 1, pp. 59–73, 2019.

[10] J. J. Appleton, S. L. Christenson, and M. J. Furlong, “Student engage-
ment with school: Critical conceptual and methodological issues of
the construct,” Psychology in the Schools, vol. 45, no. 5, pp. 369–386,
2008.

[11] Trinket. (2024) Embedded compiler. Accessed: 2024-08-09. [Online].
Available: https://trinket.io/

[12] K. Nguyen and M. A. McDaniel, “Using quizzing to assist student
learning in the classroom: The good, the bad, and the ugly,” Teaching
of psychology, vol. 42, no. 1, pp. 87–92, 2015.

[13] M. Henderson, T. Ryan, D. Boud, P. Dawson, M. Phillips, E. Molloy,
and P. Mahoney, “The usefulness of feedback,” Active Learning in
Higher Education, vol. 22, no. 3, pp. 229–243, 2021.

[14] D. C. Wynn and A. M. Maier, “Feedback systems in the design and
development process,” Research in Engineering Design, vol. 33, no. 3,
pp. 273–306, 2022.

[15] M. E. Jang and T. Lukasiewicz, “Consistency analysis of chatgpt,”
arXiv preprint arXiv:2303.06273, 2023.

[16] A. M. A. Ausat, B. Massang, M. Efendi, N. Nofirman, and Y. Riady,
“Can chat gpt replace the role of the teacher in the classroom: A
fundamental analysis,” Journal on Education, vol. 5, no. 4, pp. 16 100–
16 106, 2023.

