
Automated Detection of Track Gauge Deviations
Using Video and Depth Cameras with Machine

Learning
Connor Stonestreet∗, Hwapyeong Song†, Husnu S. Narman‡, Pingping Zhu§, and Ammar Alzarrad¶

Email: ∗stonestree19@marshall.edu,†song24@marshall.edu,‡narman@marshall.edu,§zhup@marshall.edu,
¶alzarrad@marshall.edu

Abstract—Ensuring the safety and reliability of railway infras-
tructure is crucial for transportation systems worldwide. This
paper introduces a novel approach to detecting horizontal and
vertical track height deviations in railways using video and depth
cameras combined with machine learning. Track gauge deviation
refers to the change in track gauge values from the expected
to the current value. The primary objective is to reduce the
time, human labor, and costs associated with inspecting large
sections of railway for track gauge deviation by automating
the process with machine learning. A dataset of relevant track
images is selected and augmented using techniques such as grey
scaling, blurring, brightness changes, and the addition of noise.
This dataset is used to train several machine learning models.
Various detection strategies were developed and considered, and
a combination of converting pixels to real-world measurements
and utilizing depth camera data was chosen. Preliminary results
from our depth camera demonstrate promising levels of accuracy
for estimating track gauge deviation. This machine learning
approach offers a cost-effective and efficient solution for detecting
track gauge deviation, thereby maintaining the safety of our
railroad infrastructure.

Index Terms—Railway, Object detection, Gauge deviation,
Machine learning

I. INTRODUCTION

Detecting defects and issues in railroad tracks is an essential
part of the maintenance required to keep our railways safe and
efficient. Without regular inspection and maintenance track
gauge deviation can develop and pose significant safety issues.
Track gauge deviation occurs when the distance between two
rail lines grows or shrinks outside of an acceptable range.
Track gauge deviation often occurs gradually over longer
periods of time and when left untreated can have severe
negative consequences.

To combat issues like track gauge deviation, railroad com-
panies assign large crews of workers to inspect sections of
rail track in their entirety. Inspecting every foot of a rail
track takes a significant amount of time and resources, which
could be optimized using a machine learning approach. A
machine learning approach to identifying track gauge deviation
would streamline the overall process and reduce the need for
human crews and other resources, which would reduce railway
maintenance costs by a significant amount.

Previous research has been conducted regarding different
machine learning approaches to detecting track gauge de-

viation. For example, Lasisi and Attoh-Okine utilized the
Weibull distribution to create machine learning models that
predict when track gauge deviation may occur [1]. Liao et
al. compared many of the most prominent machine learning
techniques for railroad defect detection, including track gauge
deviation [2]. Also, Sresakoolchai and Kaewunruen developed
a model that uses supervised and unsupervised machine learn-
ing, which is based on track geometry [3]. While their focus
was on missing bolts and bar cracks, their results and processes
could potentially be applied to detecting track gauge deviation.
Moreover, Falamarzi et al. conducted a comparative study
between SVM and ANN classifications for predicting gauge
deviation on both straight and curved lines, concluding that
ANN demonstrated higher performance [4].

Popov et al. utilized an autoencoder paired with KMeans
clustering to detect track geometry irregularities [5]. More
recently, Pires et al. created and optimized nine different
machine learning models to identify lateral and vertical track
irregularities [6]. This study relied on a tool called ”Optuna”
which could prove useful in our study when developing our
machine learning models.

Yu et al., in 2017, introduced CASENet, which is an edge
detection algorithm that can categorize its detection [7]. This
could potentially be adapted to help detect the edge of rail
lines. In addition, in 2019, Rezatofighi et al. conducted a
comparative analysis of different bounding box regression
models within the frameworks of Faster R-CNN and Mask
R-CNN [8]. These frameworks could be utilized to compare
the actual position of the rail lines with the expected position
to monitor their alignment. Tang et al. collected 81 scholarly
articles that focus on railway inspection and maintenance using
artificial neural networks, convolutional neural networks, and
recurrent neural networks [9]. These articles provide a solid
research base to explore for potential solutions.

While many of these works provide a solid foundation and
a good starting point for our objective, they primarily focus on
using various machine learning methods to identify defects or
predict when track gauge deviation will occur. However, our
objective is to analyze the effectiveness of machine learning
models by incorporating object detection and sensor data to
identify both vertical and horizontal track gauge deviations.

The key contributions of this paper are as follows. First,
we develop a comprehensive training dataset using various979-8-3315-1984-1/24/$31.00 ©2024 IEEE



annotation strategies and preprocessing techniques. Second,
multiple machine learning models are assessed to identify
the most effective one for detecting railroad lines. Third,
the selected model is trained with the created dataset and
fine-tuned to excel in detecting railroad lines. Then, several
methods are devised to utilize the model for detecting track
gauge deviations from video footage. Finally, the effectiveness
of the models is analyzed using datasets with and without
cameras equipped with depth sensors. The results of our
research provide a consistent and effective way to detect track
gauge deviation in railroad tracks by using machine learning.
Our results can assist organizations that monitor and repair
railroads to increase their efficiency and decrease their costs by
eliminating the need for extensive human-led track inspections.

The rest of the paper is organized as follows: Section II
includes the methods of the paper, including the creation of the
dataset, the selection of the machine learning model, the setup
of the model training environment, and finally the creation
and implementation of the track gauge deviation detection
techniques. Section III discusses the results, which include the
machine learning model training results and the results from
the implemented track gauge deviation detection technique.
Section IV contains the final remarks.

II. METHODS

Before creating and training machine learning models, it is
essential to compile a dataset of suitable images. In this paper,
the datasets used for training various models are created using
Roboflow, an online tool for dataset creation and machine
learning model training. Potential images are uploaded to the
project on Roboflow and annotated using its annotation tools.

Images are selected based on their relevance to track gauge
deviation. Ideal candidates have a clear view of both rail lines,
preferably from a near-vertical angle, and are free from track
obstructions or other obstacles. Images are compiled from
several public datasets available on Roboflow [10]–[12]. A
good example image can be found in Fig. 1.

Fig. 1. Example of a training image from the dataset.

A. Annotation Strategy

In order to prepare the image for training our machine
learning models, annotations must be applied. Detecting track
gauge deviations from a video feed requires the detection of
each rail line in each image/video frame. Therefore, each rail
line in each image is annotated using the class “railroad-lines”.
Along with the rail lines, in approximately half of the total
images, the ballast in and around the rail lines is labeled as
“ballast”. The labeling of the ballast in some of the images
allows the machine learning models to better differentiate
between the railroad lines and the ballast, which leads to better
overall predictions and performance.

The labeling of the ballast is only done on approximately
half of the total images because of the time-consuming na-
ture of manually annotating each image by hand. After the
annotation process is complete, the total number of images
is 132. After each image in the dataset is labeled, several
preprocessing methods are applied to the dataset to increase
the overall size. An example image with ”railroad-lines” and
”ballast” class annotations can be found in Fig. 2:

Fig. 2. Example training image with all annotations applied.

B. Preprocessing Techniques

After each image in the dataset is labeled, several pre-
processing methods are applied to the dataset to increase
the overall size. Using the built-in Roboflow preprocessing
techniques, up to 3 outputs per training example can be created
using selected augmentations. The following augmentations
are applied to all 107 of the training images in the dataset,
resulting in a new total of 321 training images; grayscale to
100% of images, brightness between -21% and +21%, blur
up to 2.5px, and noise up to 1.01% of pixels. An example
of a training image after preprocessing techniques have been
applied can be found in Fig. 3

Grayscale is applied to increase the training variance as the
color information is not relevant to detecting the rail lines.
The brightness values of each image vary between -21% and



Fig. 3. Example training image after preprocessing techniques have been
applied.

+21% to give the model a more comprehensive view of real-
world scenarios, where many different lighting conditions are
expected to occur. Furthermore, blur up to 2.5px is applied
to the images to make the model more resistant to potential
camera focus and blur. Since this model will eventually to
applied to instances where the video/images are taken at a
high speed, it is essential that it can still make detections even
if the view is blurry. Last, noise is added up to 1.01% of pixels
to increase training variance and prevent overfitting.

Utilizing these preprocessing techniques significantly in-
creases the total number of training images that are available
in the dataset, and provides a more comprehensive collection
of images that better represent real-world conditions.

C. Training Environment

In order to determine which model is the best for our
applications, each model is trained and tested using identical
conditions. Model training is done using Google Colab, with
the selected GPU being the A100. Each model version is
trained using the same dataset, the creation of which is
discussed earlier in this paper. Model training is done using
the built-in training functions that the YOLO library provides.
All hyperparameters are kept default, with the exception of
the image dimensions, which was set to a value of 640 pixels.

D. Machine Learning Model Selection

When selecting a machine learning model for detecting
track gauge deviation, several factors are considered. The
chosen model must excel in image segmentation and main-
tain minimal implementation complexity without sacrificing
performance. After evaluating various options, several models
from the YOLO library by Ultralytics were selected for
comparison, including versions of YOLOv8, YOLOv9, and
YOLOv11 [13]–[15].

The specific chosen model is from YOLOv9, and is the
highest strength YOLOv9 segmentation model available, de-

noted by the “e” in the model’s name, “YOLOv9e-seg”. This
model performs at a high level for both object detection and
image segmentation and offers a pretrained model option.

The pretrained model option is pretrained using the Mi-
crosoft COCO dataset and can be fine-tuned using a custom-
made dataset that is better fit for specific needs. The pretrained
model is advantageous when the size of the training dataset is
small. A comparison between the different versions of YOLO
segmentation models can be found in the ”Training Results”
section of Section III.

E. Horizontal Track Gauge Deviation Detection Strategies

Several different methods of detecting track gauge deviation
from a video source are examined to determine their effective-
ness and consistency. First, detection is attempted using the
railroad ties that span between the railroad lines as leveling
guidelines to determine distance. In theory, measuring from
one rail line to the other using the railroad ties as a guide
should provide an accurate measurement, as the ties are ideally
perpendicular to the rail lines. An example of close to perfect
conditions can be found in Fig. 4. However, when observing

Fig. 4. Example of railroad ties in a close to perfect environment.

real-world conditions, these railroad ties are often heavily
decayed, skewed, or missing entirely. The railroad ties are
also often covered by the surrounding ballast on the track.
An example image of obscured railroad ties can be found
in Fig. 5. Additionally, this method would require the model
to know where the railroad ties are to measure from those
spots. This either requires our machine learning model to also
detect railroad ties, or each tie needs to be spaced exactly
the same distance apart. In a real-world scenario, each rail tie
will never be equidistant from each other, and our machine
learning model could never be consistent and accurate enough
to identify each tie at the level required for sufficient results.

The second detection method we explored is utilizing a
depth camera to measure how far each rail line is from the
camera, and then comparing the values to see if one line
is farther away than the other. This approach requires the



Fig. 5. Example of obscured railroad ties on rail tracks.

depth camera to be set up at exactly the center of where the
two rail lines should be, as well as proper depth calibration,
after which the height and angle of the camera must be kept
consistent. This approach becomes difficult to replicate each
time recording takes place.

The third detection method also relies on several aspects of
the process being kept consistent. This approach measures the
total number of pixels in between the centroids of each rail
line detection, then applies a known scale factor to the pixel
count, which results in an accurate distance calculation. One
potential issue that arises with this approach is the centroids
of each detection not being parallel to each other, unlike Fig.
6, which causes an incorrect measurement. Fig. 7 shows an
example of this, which is caused by the camera angle including
more of the left rail line than the right rail line. In order to

Fig. 6. Example of bounding boxes that give ideal centroid measurements.

combat this issue, instead of measuring the pixel count directly
between each centroid, the pixel count from each centroid to
the center of the image is collected, and then is combined
to create the overall pixel distance. While this approach may
cause the specific point on the rail being measured on each side
to differ slightly in some cases, it prevents over measurements

Fig. 7. Example of diagonal bounding box separation that results in an
incorrect measurement.

such as in Fig. 7. A flowchart that details the horizontal track
gauge deviation detection process can be found in Fig. 8.

Fig. 8. Flowchart for the horizontal track gauge deviation detection process.

For this method to work, several things must be kept
consistent. First, in order for the centroid of the rail line
bounding box to be located on the surface of the track, the
camera must be positioned directly vertical of the track. This
makes sure that the rail line is not at an angle in the video,
and therefore the center should always lie on the surface of
the track. Second, the image/video dimensions and the pixel
per meter scale factor must be determined for each instance.
The dimensions of the image/video are important because they
determine the pixel value where the vertical center of the



image is. The pixel per meter scale factor is used to convert
the total number of pixels from each rail line to the center
combined into a real-world measurement such as meters or
feet.

The pixel per meter scale factor can be difficult to deter-
mine. A manual approach can be used, where a known distance
between rail lines can be used to judge if the scale factor is
appropriate. For example, the distance between the rail lines
in Fig. 6 is known to be 55 3/4 inches. Knowing this, the
pixels per meter value can be adjusted appropriately until the
output measured distance is 55 3/4 inches. Alternatively, if the
width of the rail line surface is known, the number of pixels
the rail line surface makes up can be manually counted, which
can then be converted into a scale factor. While the pixel per
meter scale factor can be difficult and tedious to calculate,
it allows for videos taken at different heights to be used,
as long as the scale factor is properly set each time. While
each track gauge detection method has its own shortcomings
and limitations, mainly regarding how to keep the process
consistent, the third method that measures the pixels has the
most manageable factors. Results from this detection method
can be found further in the paper, in the ”Video Detection
Results” section in Section III.

F. Vertical Track Height Deviation Detection Strategy

While horizontal track gauge deviation can be more obvi-
ous, vertical track height deviation is harder to detect but poses
significant risks to the health of the railroad track. Vertical
track height deviation occurs in two main ways: one rail line
rising above the other, causing a sloped angle between the two
rail lines, or both rail lines rising above the appropriate height.

In order to determine if one rail line has raised above the
other and causes a sloped angle between the two, we employ
a similar process to how we detect if both rail lines have
raised above a threshold. Each corresponding depth and color
frame are processed and converted to images that can be
detected using the machine learning model. The ”YOLOv9e-
seg” machine learning model is used to detect rail lines in the
color image, and the results are processed to find the depth
data inside the detected bounding box.

The distance of the closest pixel inside the bounding box
for each rail line is added to a list. Then, the two entries in
the list, which correspond to the closest pixel in the detected
bounding box for each rail line, are compared to each other. If
the minimum depth pixel in the two rail lines being compared
differ by a predetermined amount, it is judged that vertical
track height deviation has occurred in at least one of the rail
lines and a flag is raised.

Detecting if both rail lines have raised is significantly harder
than only detecting one. One potential complication when
trying to detect if both rail lines have raised is that our depth
camera, which ideally is attached to a rail truck/car on the rail
tracks, also raises the same amount. As the rail lines which the
camera car is attached to raise, the entire camera contraption
will raise the same amount, causing the rail lines to be a
consistent distance from the camera, despite the significant

Fig. 9. Flowchart for the vertical track height deviation detection process.

change in elevation. This effect leads to missed detection of
vertical track height deviation when both rail lines raise the
same amount.

To combat this effect, the distances of each rail line are
stored for the current frame. Then, the distances of the rail
lines in the next frame are compared to the previous frame. A
threshold is set for appropriate increases or decreases in track
height, and if the current rail line’s distances change more than
the set threshold when compared to the previous frame, a flag
is raised. A flowchart that details the process for vertical track
height deviation can be found in Fig. 9.

III. RESULTS

A. Training Results

Each model version was trained for 500 epochs total,
and each model version’s metrics, including recall, precision,
and F1 score, were recorded after the training process was
complete. An important note, all of the metrics in Tables I are
for the “railroad-tracks” class, and do not include any results
from detecting the “ballast” class. The results of the training
can be found below in Table I :

TABLE I
COMPARISON OF DIFFERENT YOLO SEGMENTATION MODELS.

Model F1 Score Recall Precision Time (ms)
YOLOv8x-seg 0.759 0.886 0.818 16.5
YOLOv8l-seg 0.754 0.856 0.674 4.5
YOLOv9c-seg 0.826 0.897 0.765 4.6
YOLOv9e-seg 0.869 0.875 0.864 10.4
YOLO11x-seg 0.799 0.819 0.78 7.3

The results from Table I show that the YOLOv9e-seg model
version was able to achieve an F1 score of 0.869, which is the
highest of the group. The other model versions demonstrate
F1 scores significantly lower than the YOLOv9e-seg, with the
closest being 0.826 from the YOLOv9c-seg model.



An additional important metric for our usage is recall. A
high recall value is essential for our machine learning model
as false negatives can be dangerous and costly, while a limited
number of false positives can be accepted. The YOLOv9e-seg
model version obtains a recall score of 0.875, compared to the
highest recall value of 0.897 from the YOLOv9c-seg model.
Despite the slightly higher recall value, when considering all of
the training results, the YOLOv9e-seg model version performs
the best and was selected as the model for our processes.

B. Video Detection Results

For the video detection results to be both consistent and
accurate, a depth camera must be used to take the vertical
video of both track lines. Our project utilizes the Intel®
RealSense™ Depth Camera D435. Without a depth camera
to provide distance measurements of each rail line, track
gauge deviation detection from the video source would not be
possible. An example of a color image and a depth image taken
from the depth camera can be found in Fig. 10 and Fig. 11.
The vertical track height deviation detection techniques rely

Fig. 10. Example of color video from the depth camera.

Fig. 11. Corresponding depth video from the depth camera.

on depth camera measurements to produce accurate results and
properly detect when track height deviation has occurred. In
addition to the depth camera requirement, several factors must
be kept consistent between recordings to ensure consistency.
First, the angle of the depth camera must be perpendicular

and vertical to the track surface. This will guarantee that the
depth camera measurements is as accurate as possible and
that the horizontal and vertical track height deviation detection
techniques work as intended. Second, the height of the depth
camera relative to the track should be kept the same. While
the depth camera can account for different distances, it must
be calibrated before each use, so it is safer to keep the camera
height consistent.

Preliminary results using video taken using the depth
camera in a handheld manner are promising and show the
potential of video based track gauge deviation detection. An
example frame after the machine learning model has applied
its detections can be found in Fig. 12.

Fig. 12. Example of the detection being applied by the machine learning
model using depth camera.

After the detection is applied, the calculations to determine
horizontal and vertical track height deviation can be made. The
distance between the two rail lines is estimated to be 1.44
meters, and neither rail line has raised above an acceptable
amount. Additionally, the difference in height of each rail line
is not outside of the threshold. Finally, the heights of each
rail line has not changed significantly when compared to the
previous video frame. Therefore, neither horizontal or vertical
track height deviation is deemed to have occurred.

While this example is limited by the nature of the video
recording, it still demonstrates the potential effectiveness of
detection from video. Many of the consistencies that the
video detection methods require are absent from this example,
but a reasonable estimation can still be made. More precise
measurements can be gathered through the use of a track car
that holds the camera in a stable and consistent position across
the length of the entire video.

C. Limitations

The process of detecting something as precise as track gauge
deviation naturally comes with a large set of limitations and
drawbacks. The majority of limitations stem from the many
variables that come with the video recording process.

If the recorded videos are not shot at a vertical angle, or the
camera is not positioned in the center of the rail lines, then
incorrect measurements can be made due to incorrect depth
camera measurements. In addition, any objects on the rail track



surface or surrounding the rail lines could possibly interfere
with the machine learning model’s ability to make predictions.
These detection strategies rely on clear and unobstructed
videos to perform at their highest capability.

Another significant limitation to these track gauge deviation
detection methods is their ability to work with different types
of track sections. The ideal scenario is straight track sections
with no other rail lines around. Often times, especially at rail
intersections, there are several sets of rail lines within close
proximity of each other, which cause more than two rail lines
to be detected, breaking the process.

Sections of curved track is another area where potential
issues arise. When dealing with the horizontal track gauge
deviation detection, the centroids of each detection bounding
box are assumed to be located on the surface of the rail track.
The more the section of track is curved, the less likely this
is to be true. Therefore, these detection processes should only
be applied in the context of straight sections of rail track,
where only two rail lines are visible in the video footage. This
ensures erratic and incorrect measurements are not made, and
false flags and warnings are not raised.

Despite the limitations of the video detection method, the
overall process significantly cuts down on the time and human
labor needed to inspect rail track for track gauge deviation. Our
ideal track scenario encompasses the biggest grouping of track,
straight track, ahead of curved track and rail intersections.
When keeping the limitations and necessary consistencies in
mind, our detection techniques provide an efficient and reliable
way to detect track gauge deviation.

IV. CONCLUSION

The integration of video and depth cameras with machine
learning has demonstrated significant potential in detecting
track gauge deviations in railway infrastructure. This inno-
vative approach addresses the primary objective of reducing
the time, human labor, and costs associated with traditional
inspection methods. By automating the detection process,
we can achieve more accurate and efficient identification of
horizontal and vertical track height deviations, which are
crucial for maintaining the safety and reliability of railways.

Our study has shown that, under controlled conditions, the
use of video and depth camera recordings can effectively
detect track gauge deviations. The combination of converting
pixels to real-world measurements and utilizing depth camera
data has yielded promising preliminary results, indicating high
levels of accuracy in estimating track gauge deviations. This
method offers a cost-effective and efficient solution, making
it a valuable tool for railway maintenance. However, the
approach is not without its limitations. Challenges such as
inaccurate measurements on curved track segments, rail inter-
sections, obstructions on the track, and inconsistent camera
angles and distances must be addressed. These limitations
highlight the need for further research to refine detection
strategies and improve the robustness of the system. Future
work should focus on developing specialized detection tech-

niques for complex track geometries and testing a broader
range of machine learning models to enhance performance.

Despite these challenges, the benefits of this technology are
substantial. The ability to conduct more frequent and thorough
inspections will lead to a significant reduction in the time
and human labor required for railway maintenance. This, in
turn, will lower the overall costs and enable more regular
inspections, thereby enhancing the safety and efficiency of
railroads.
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