
Automated Railway Crack Detection Using Machine
Learning: Analysis of Deep Learning Approaches

Andrew d’Arms∗, Hwapyeong Song†, Husnu S. Narman‡, Nevzat C. Yurtcu§,
Pingping Zhu¶, and Ammar Alzarrad∥

Email: ∗darms1@marshall.edu,†song24@marshall.edu,‡narman@marshall.edu,§ncanyurtcu@outlook.com,
¶zhup@marshall.edu,∥alzarrad@marshall.edu

Abstract—Detecting defects in railway tracks, particularly
small cracks or gaps, is traditionally a labor-intensive task. By
leveraging machine learning, this process can be automated and
accelerated, reducing both time and costs. This paper evaluates
several prominent deep learning models for identifying railway
cracks and examines the key factors influencing the training
process. While our primary focus is on various versions of the
You Only Look Once (YOLO) object detection model, we also
explore the Residual Networks model. Our findings indicate that
YOLOv5 and YOLOv9 achieve high crack detection accuracy,
with F1-scores of 0.92 and 0.91, respectively. These results
underscore the efficacy of deep learning models in detecting
and classifying cracks, thereby potentially lowering labor costs.
Additionally, we employ Explainable AI techniques to elucidate
the models’ decision-making processes in crack detection.

By automating the detection of railway track defects, we can
significantly enhance the efficiency and reliability of railway
maintenance. The use of deep learning models, particularly
the YOLO series, has shown promising results in accurately
identifying even the smallest cracks. This not only speeds up
the inspection process but also ensures a higher level of safety
by detecting potential issues before they become critical. The
integration of Explainable AI techniques further adds value by
providing insights into how these models make decisions, which is
crucial for gaining trust and improving the models. Overall, our
research highlights the potential of advanced machine learning
techniques to revolutionize railway maintenance, making it more
cost-effective and reliable.

Index Terms—Railway, Crack detection, Computer vision,
Deep learning, Explainable AI (XAI)

I. INTRODUCTION

Identifying defects in railway tracks is crucial for effec-
tive railroad maintenance. One of the primary challenges in
detecting small cracks or gaps is the labor-intensive nature
of the process, largely due to the extensive length of the
tracks. However, recent advancements in machine learning
have sparked renewed interest in more efficient methods for
defect detection.

A considerable amount of literature has been published on
the issue. Gibert et al. researched a machine vision method
to detect joint bar cracks, achieving an effectiveness of only
80% accuracy [1]. This study demonstrated that even before
the advent of machine learning, there were methods that could
be effective for our purposes. Guo et al. later applied machine
learning techniques to the same problem, improving the effec-
tiveness to 85% accuracy [2]. However, their work also high-

lighted the limitations of using convolutional neural networks
for this task. While some research has been conducted using
You Only Look Once (YOLO) [3], it remains a state-of-the-art
object detection model renowned for its speed and accuracy.
YOLO achieves this by applying a single neural network to
entire images, dividing them into numerous regions, predicting
bounding boxes, and weighing them appropriately. Zheng et
al. compared various algorithms to determine the optimal
method for detecting joint bar cracks [4]. They found that
YOLOv3 excelled at detecting small cracks, while RetinaNet
was more effective for larger cracks. By combining these
models, they developed a deep transfer learning network that
proved highly effective for both types of crack detection. In a
similar study, Hsieh and Tsai evaluated 68 machine learning-
based crack detection methods. They found that FCN and U-
net performed most favorably, each achieving scores above 90
on the enhanced Hausdorff distance metric [5]. Moreover, Li
et. al. used a YOLOv5s model to detect missing track fasteners
with an average mean precision (mAP) of 97.4% and lauded its
speed and small memory footprint, in addition to its accuracy
[6]. Similarly, Fu et. al. were seeking a less intensive model to
detect missing fasteners, and chose MobileNet-YOLOv4 due
to its more efficient feature extraction [7]. By using this model,
they were able to improve error rates by 80% when compared
to YOLOv4 on its own. Min et al. developed a novel approach
by designing a device that traverses the tracks, detecting scars
on the rails and sleepers with 95% accuracy. Unlike most
methods, this detection process is entirely conducted onboard
the vehicle [8].

In this paper, our aim is not only to identify cracks in
the railways but also to locate gaps in the track. This adds
an additional layer of complexity and distinguishes our work
from the previous studies. Our objective is to accurately and
efficiently detect and identify cracks and gaps of various sizes
in railroad tracks from multiple camera angles using object
detection machine learning models. The key contributions of
this paper are (i) to determine the most suitable machine learn-
ing model with optimized parameters for detecting cracks and
gaps, (ii) to understand why object detection models succeed
or fail in identifying the desired cracks and gaps by using
Explainable AI (XAI) techniques, and finally (iii) to observe
the effects of different datasets and class categorizations on
the behavior of machine learning models. The results indicate
that deep learning models can automatically detect cracks and979-8-3315-1984-1/24/$31.00 ©2024 IEEE

gaps, which can significantly reduce the overall cost of railway
maintenance.

The remainder of this paper is organized as follows: Sec-
tion II discusses the machine learning models. Section III
outlines the methodologies and approaches used. Section IV
examines the impact of dataset and class categorization on
model performance. Section V presents the visual results and
their interpretation. Finally, Section VI has the final remarks.

II. MACHINE LEARNING MODELS

Although there are many different machine learning models,
in this paper, we explore the effectiveness of You Only Look
Once (YOLO) [3] with its versions and Residual Networks
(ResNet) [9] models in detecting cracks and gaps on railroads.

A. YOLO and Its Versions

YOLO is a real-time object detection model that identifies
and locates objects within an image. It has evolved through
various versions, including YOLOv1, YOLOv2, YOLOv3,
YOLOv5, YOLOv6, YOLOv7, YOLOv8, YOLOv9, and
YOLOv10. Each iteration enhances accuracy and speed by
refining the network architecture and incorporating new fea-
tures to better handle complex scenarios and small objects.
The primary differences between these versions lie in their
balance of speed and accuracy, with newer versions generally
achieving higher performance while maintaining real-time
capabilities. Key distinctions among YOLO versions include
variations in network architecture, loss functions, anchor box
design, and training strategies [10]–[12].
Network Architecture: Each new version frequently integrates
updated backbone and neck architectures, such as Dark-
net, CSPDarknet, or specialized feature aggregation modules.
These enhancements usually result in better feature extraction
and improved detection performance.
Loss function: Adjusting loss functions can emphasize partic-
ular elements of detection, such as bounding box regression
or class prediction, thereby influencing the model’s attention
to various facets of object detection.
Anchor box design: The method of using anchor boxes to
predict bounding boxes can differ between versions, affecting
the model’s ability to manage objects of varying sizes and
aspect ratios.
Training strategies: Updated versions might employ sophisti-
cated training methods such as data augmentation and learning
rate scheduling to enhance performance even further.

YOLOv1 introduced the concept of single-stage object
detection but had limitations in accuracy, especially for small
objects. YOLOv2 improved accuracy by incorporating an-
chor boxes and a batch normalization layer, enhancing both
localization and speed. YOLOv3 advanced further with a
feature pyramid network (FPN) to handle objects of various
sizes, improving detection performance across different scales.
YOLOv4 brought in new backbone and neck architectures
like CSPDarknet53 and PANet, achieving significant accuracy
gains while maintaining speed. YOLOv5 is praised for its ease
of use and excellent balance between speed and accuracy, often

considered the most user-friendly version. YOLOv6 focused
on hardware optimization with a redesigned backbone and
neck architecture, delivering high performance on specific
hardware platforms. YOLOv7 introduced the “E-ELAN” net-
work architecture, optimized training methods, and improved
detection of smaller objects with higher resolution, resulting
in increased accuracy. YOLOv8 featured a novel anchor-free
split head and state-of-the-art backbone and neck architectures,
offering a better balance between accuracy and speed, making
it suitable for diverse applications. YOLOv9 aimed to maintain
real-time object detection capabilities while achieving higher
mean average precision (mAP) compared to previous models,
often considered one of the most accurate versions. YOLOv10
emphasized reduced latency with a non-maximum suppres-
sion (NMS)-free approach, allowing for faster post-processing
while still delivering competitive accuracy, though it may
struggle with very small objects due to fewer parameters.
Subcategories for YOLO version: Some YOLO versions are
further divided into iterations, from the tiny ‘t’ or nano
‘n’ variant to the extensive ‘e’ model or ’x’, showcasing
enhancements in both accuracy (mAP metrics) and efficiency,
with fewer parameters and lower computational requirements
(FLOPs).

B. ResNet

ResNet [9] is a widely-used deep learning model in com-
puter vision, particularly for tasks such as image segmentation
and object detection. Its notable features include skip connec-
tions, residual blocks, and various model variants.
Skip connections: These connections facilitate the smoother
flow of gradients throughout the network, enhancing the
training process for deeper networks.
Residual blocks: These blocks form the core of ResNet,
incorporating the essential skip connection.
Variants: ResNet comes in several variants, such as ResNet18,
ResNet50, ResNet101, and ResNet152, each named according
to the number of layers in the network.

III. METHODOLOGY

Most of the models were trained using the Ultralytics
Python package, which was also utilized for validation and
prediction. The training was conducted on an Nvidia GeForce
RTX 3090, equipped with 24 gigabytes of VRAM, making it
an ideal choice for the VRAM-intensive process. Additionally,
other tools including Roboflow by Dwyer et al. [13] was
employed for dataset compilation and augmentation.

We primarily employ quantitative analysis to identify the
most effective model for crack detection. The models’ per-
formances are evaluated by using precision, recall, and F1-
scores. Precision is the ratio of correctly predicted positives
to the total predicted positives, while recall is the ratio of
correctly predicted positives to the actual positives, assessing
the completeness of positive predictions. The F1-score, which
is the harmonic mean of precision and recall, provides a
balanced measure of both. In this study, the F1-score is
calculated for each class. Additionally, the confusion matrix

is utilized to evaluate the accuracy and quality of the model’s
predictions. Furthermore, XAI has been used in various classes
to facilitate decision-making. It is accomplished utilizing Easy
Explain, a Python library by Theocharis [14].

The performance of a model is closely tied to the quality of
the dataset used. In this study, we conduct experiments using
two types of datasets: an independent dataset and a combined
dataset. We test various models and perform hyperparameter
tuning on these datasets, recording the results for each com-
bination.

IV. DATASET AND CATEGORIZATION EFFECTS ON THE
PERFORMANCE

Our research has identified several datasets related to rail-
roads with cracks [15]–[21]. To assess the feasibility of crack
detection using machine learning models, we initially evaluate
the models’ performance in identifying the presence of cracks
or gaps. Subsequently, we conduct experiments to examine the
impact of multi-class classification of cracks and gaps across
various datasets.

A. Details on Specific Datasets

The datasets used for this research were all similar in scope,
as they all feature images of railway cracks and gaps from
various angles and environments. Some images are shared
between datasets, but may be augmented in different ways,
making them unique in context of the whole, combined
dataset.

The dataset used for single classification, being the ’Thesis
Group’ dataset featured a broad selection of scenarios for our
models to work on [15]. These include images with people
in the background, cracks from various angles, including top-
down, side-view, etc., and both wide and narrow shots. In
regard to the defects themselves, gaps of a wide range of sizes
are included, as well as both minor and major cracks. Also
included are a significant number of images of non-defective
tracks, as these are integral to ensuring model accuracy. If only
defective track images are included, then the model may be
unable to properly classify them, should it see them, resulting
in significant false positive rates. The main limitation of this
dataset was the singular class, as classifying multiple defects
under this class made it difficult for the model to accurately
predict new defects, resulting in decreased performance. This
was rectified later when it was relabeled for the combined
dataset.

The other datasets were similar in scope to the original,
but with some minor differences, especially in regards to
labeling. The ’Technofly Solution’ dataset has a good variety
of angles, defects, zooms, and environments, but featured
several extraneous classes for other defects outside the scope
of this project [16]. These extra defects also meant that there
were several images irrelevant to this project’s scope, but were
still included in the combined dataset to expand the unlabeled
category. The dataset by Eunus et. al. featured a good variety
of relevant images, but were entirely unlabeled and most
of the images were taken from a side-view angle [20]. The

dataset by Ranganath had a good variety of angles, defects,
and environments, but again were entirely unlabeled [19]. The
’System Thinking Project’ dataset featured a decent range of
angles, environments, and defects, but had unusable, polygonal
labels and was a limited in scope [21]. After combining these
datasets, the limitations became much less relevant, especially
due to the relabeling process. Together, they form a very broad
dataset with many different angles, defects, backgrounds,
scenarios, and zooms, all with a consistent labeling scheme,
allowing for the increased accuracy previously mentioned.

B. The Effects of the Single Classification on the Different
Models

To observe the performance of the models, we use the
‘Thesis Group’ dataset [15]. This dataset contains nearly 1,000
images, all categorized under a single class by combining gaps
and cracks into one category. Through data augmentation, the
dataset size increased to over 2,000 images. This simplification
facilitates the evaluation of different models’ performance. The
dataset is divided into 86% for training, 10% for validation,
and 4% for testing.

TABLE I
THE PERFORMANCE OF THE SELECTED MODELS ON THE ‘THESIS GROUP’

DATASET [15] FOR A SINGLE CLASS.

Model F1 Precision Recall
YOLOv10x 0.63 0.73 0.53
YOLOv10n 0.56 0.74 0.51
YOLOv9e 0.68 0.79 0.60
YOLOv9c 0.63 0.73 0.61
YOLOv8 0.59 0.65 0.55
YOLOv6 0.60 0.72 0.54
YOLOv5 0.51 0.61 0.50
YOLOv3 0.62 0.74 0.54
ResNet101 0.59 0.72 0.56

Table I presents the optimized results of YOLOv10x,
YOLOv10n, YOLOv9e, YOLOv9c, YOLOv8, YOLOv6,
YOLOv5, YOLOv3, and ResNet101 using various opti-
mization techniques and hyperparameter tunning for ‘Thesis
Group’ dataset [15]. For YOLO models besides YOLOv10 and
YOLOv9, only the default model size was included to increase
readability. According to the obtained results, YOLOv9 out-
performs other models with the highest F1 score, Precision,
and Recall for the single classification of gaps and cracks.
In contrast, YOLOv5 has the lowest F1 score, Precision, and
Recall.

C. The Effects of the Multi Classifications on the Different
Models

To evaluate the impact of multi-classification on different
models, we conducted experiments using three and four clas-
sification categories for cracks and gaps. The three classifi-
cations are: crack, small gap, and large gap. In this setup, a
small gap is defined as any gap between 0-1 inch in the track,
while a large gap is any gap greater than 1 inch. For the four
classifications, the categories are: crack, small gap, medium
gap, and large gap. Here, a small gap is defined as any gap

between 0-1 inch, a medium gap is between 1-3 inches, and
a large gap is any gap greater than 3 inches.

For this experiment, we created a larger dataset by com-
bining the previously mentioned datasets to ensure we have
a sufficient number of labeled data for various classes. How-
ever, to observe the effects of multi-class classification, we
maintained the same size for the combined dataset in both
the three-class and four-class scenarios. Additionally, some
augmentations were performed through Roboflow. These aug-
mentations include: horizontal flipping, +/- 10-degree shear
horizontal and/or vertical transformations, and +/- 15-degree
rotations. Furthermore, the dataset is divided into 70% for
training, 20% for validation, and 10% for testing.

C.1 The Effects of the Three Classifications on the Different
Models

The same models from Section IV-B were tested again for
this expanded dataset to ensure consistency. Table II shows
the results for all models. As similar to the single class result,
YOLOv9 outperforms YOLOv10 models with the better F1
score, Precision, and Recall. Interestingly, ResNet101 was able
to match YOLOv9e in terms of precision.

TABLE II
THE PERFORMANCE OF THE SELECTED MODELS ON THE COMBINED

DATASET FOR THREE CLASSES.

Model F1 Precision Recall
YOLOv10x 0.71 0.84 0.62
YOLOv10n 0.72 0.72 0.73
YOLOv9e 0.81 0.86 0.80
YOLOv9c 0.79 0.85 0.75
YOLOv8 0.74 0.85 0.67
YOLOv6 0.72 0.80 0.65
YOLOv5 0.72 0.80 0.65
YOLOv3 0.77 0.85 0.69
ResNet101 0.77 0.86 0.71

C.2 The Effects of the Four Classifications on the Different
Models

Table III presents the optimized results of the four-class
detection for the combined dataset. We include the perfor-
mance metrics for all of the same models as in the previous
sections to ensure consistency and possible outliers. While
YOLOv9 demonstrates superior performance in Single and
Three-Class categorization, YOLOv5 excels in terms of F1
score and Recall, outperforming YOLOv9 by a margin of 0.01.
Notably, YOLOv6 and YOLOv9 achieve the highest precision
among the models evaluated. These findings highlight the
nuanced strengths of each YOLO version, suggesting that the
choice of model may depend on the specific requirements
of the detection task at hand. For instance, YOLOv5 might
be preferred for applications prioritizing overall accuracy and
recall, whereas YOLOv6 and YOLOv9 could be more suitable
for tasks where precision is paramount.

Due to the YOLOv5 performance for four-class categoriza-
tion, the F1 Confidence Curve for YOLOv5 is provided in Fig.
1.

TABLE III
THE PERFORMANCE OF THE SELECTED MODELS ON THE COMBINED

DATASET FOR FOUR CLASSES.

Models F1 Precision Recall
YOLOv10x 0.88 0.90 0.85
YOLOv10n 0.84 0.92 0.79
YOLOv9e 0.91 0.94 0.92
YOLOv9c 0.79 0.85 0.75
YOLOv8 0.86 0.87 0.84
YOLOv6 0.88 0.94 0.84
YOLOv5 0.92 0.92 0.93
YOLOv3 0.87 0.89 0.87
ResNet101 0.87 0.90 0.86

Fig. 1. The F1 confidence curve of the optimized YOLOv5 performance.

D. Discussion on Effects of Dataset and Multi-Class Catego-
rizations

It is well-known that larger and higher-quality datasets
significantly enhance object detection performance. Similar to
the detection of cracks and gaps in railroads, we have verified
this using the ‘Thesis Group’ dataset [15] and a combined
dataset. Notably, our findings indicate that increasing the
number of class categorizations within this combined dataset
also boosts performance. This improvement is likely due to
the model’s enhanced ability to distinguish between a greater
variety of objects, leading to more accurate predictions.

However, this behavior may not always be anticipated.
Typically, one might expect that adding an existing object
class would improve the prediction accuracy for that class
while potentially reducing the accuracy for similar classes.
This is because the model might become more specialized in
identifying the newly added class, potentially at the expense of
other classes that share similar features. Conversely, introduc-
ing a non-existing object class could decrease the prediction
accuracy across all classes. This reduction in accuracy might
occur because the model could become confused by the
presence of an object class that does not exist in the real-
world scenarios it is being trained to recognize, leading to
overall poorer performance.

Moreover, the complexity of the dataset and the diversity of

the object classes play crucial roles in determining the model’s
performance. A well-balanced dataset with a wide range of
object classes can help the model generalize better, thereby
improving its robustness and accuracy. On the other hand, an
imbalanced dataset with too many similar classes might lead
to overfitting, where the model performs well on the training
data but poorly on unseen data.

V. VISUAL RESULTS

In this section, we present various examples of crack and
gap detection across different models.

Fig. 2. Crack and gap detection across five images using YOLOv5, YOLOv8,
YOLOv9, and YOLOv10, respectively, from left to right.

Fig. 2 illustrates crack and gap detection across five images
using YOLOv5, YOLOv8, YOLOv9, and YOLOv10, respec-
tively, from left to right. First row shows a top-down view
of a small, jagged gap that could be mistaken for a crack.
Only YOLOv9 and YOLOv10 successfully identified it, while
YOLOv5 misidentified it twice, and YOLOv8 completely
missed it. Second row presents a side view of a distinct
crack. All models identified it as two separate cracks due
to its discontinuity. Third row features four gaps present
simultaneously. All models successfully identified these gaps.
Fourth row displays a lower-quality image with a large gap
in the foreground and a small gap in the background. All
models successfully detected both gaps. Fifth row shows a
crack under low lighting conditions. Despite the poor lighting,
all models were able to identify the crack. Due to the similar
architecture between YOLO versions, most YOLO models
perform similarly.

A. Defect Categories

Fig. 3 illustrates various categories of examples detected
using YOLOv9e, the most consistent model in our study. These

Fig. 3. Illustration of three defect categories detected by YOLOv9e: vertical
(row 1), horizontal (row 2), and diagonal (row 3).

broad categories were selected to demonstrate the model’s
diverse capabilities. First row depicts vertical gaps, including
instances of multiple defects and gravel on the railroad track.
Second row hows horizontal gaps and cracks, featuring close-
up, upside-down, and sideways shots. Final row highlights
diagonal defects, including distorted edges due to augmenta-
tion, multiple defect types, and an atypical crack. The model
successfully identified all these cases with confidence levels
of at least 0.75.

Fig. 4. Illustration of defect categories detected by YOLOv9e, including side-
view (row 1), top-view (row 2), and low quality (row 3).

Fig. 4 illustrates various defect categories to demonstrate the
model’s comprehensive effectiveness. The first row presents
side views of defects, such as a track split and an underside
gap. The second row shows approximately top-down views,
including a crack that has damaged part of the track. The
final row features more challenging examples: a large side-
view gap, a low-light image of a small gap without a shadow,

and a low-quality image of a minimally jagged crack. In all
these cases, YOLOv9e detected the cracks and gaps with a
confidence level of at least 0.75.

B. Failed Detection

Fig. 5. Illustration of four instances where YOLOv9e failed to correctly
detect.

Fig. 5 illustrates four instances where YOLOv9e failed to
correctly identify defects. In the top left image, the model
mistakenly classifies a crack as a small gap. This error
likely arises because the crack’s straightness resembles typical
gaps. Although the length of the “gap” should have indicated
otherwise, the model misclassified it. Nevertheless, the defect
was still detected, which is advantageous as reclassifying an
error is easier than identifying a missed defect.

The top right photo shows the model incorrectly identifying
a medium gap in the top right corner, despite the defect
being partially visible and not clearly a gap. This indicates
that the model focuses solely on the gap itself, ignoring the
surrounding track, which is suboptimal. However, since this
was a false positive rather than a false negative, the impact of
this error is minimal.

The bottom left photo illustrates YOLOv9e mistakenly
identifying a shadow as a small gap. This error likely arises
from the model’s tendency to associate small gaps with narrow,
black rectangles, which the shadow resembles. Correcting this
mistake is challenging due to the visual similarity and the
model’s inability to consider the full context of the photo.
However, using segmentation could help, as it would allow
the model to focus solely on detecting cracks or gaps in the
track, ignoring irrelevant surrounding areas.

Finally, the bottom right photo shows the model inaccurately
identifying a small gap on the edge of the image. It is difficult
to determine whether the area of interest is a shadow or a gap,
but since it is not fully visible, it likely should not have been
identified. This mistake is unlikely to significantly impact the
model’s actual implementation, as the images used in practice

Fig. 6. Explainable AI interpretations of various defects using YOLOv8.

will be more homogeneous and feature less challenging angles,
reducing the likelihood of errors.

While these mistakes were relatively minor within the scope
of this research, they remain significant considerations. The
model was trained on a highly diverse image set, including
many challenging situations. Consequently, the results may
not accurately reflect its performance in broader applications.
At this stage, the best approach to address these issues is to
identify and accurately label more edge cases, enabling the
model to distinguish minute differences between shadows and
gaps. Alternatively, employing a more context-aware model
could be beneficial.

C. Explainable AI for YOLO Models in Crack and Gap
Detection

Fig. 6 illustrates the application of Explainable AI (XAI)
across various classes, specifically supporting YOLOv8. Al-
though the YOLOv8 used in this evaluation is not the top-
performing one, it can assist us in understanding how YOLO
models work while detecting cracks and gaps. We use the
Easy Explain library to provide insights into YOLO’s decision-
making process.

In the first row, the model is applied to a crack class. The
model tends to highlight any sharp edges it detects, with a
particular focus on the jagged nature of cracks. Two clusters of
red lines are clearly visible, corresponding to the areas where
the model identified cracks.

The second row shows the model’s performance on a small
gap case. Here, the model again highlights sharp edges but
outlines the area where the gaps are, rather than highlighting
their interiors. These gaps appear almost as eclipses in the im-

age, matching the actual detected gaps. The model consistently
identifies the area with the most highlights as the detection.

The third row depicts the model’s run on a medium gap
case, which looks quite similar to the small gap case. The
model forms an eclipse around the gap area, reflecting the
frequent misclassification between these two classes.

The final row presents a large gap case, which differs
significantly from the others. The model highlights the gravel
within the gap and the edges of the rail where the gap occurs.
Since large gaps often include gravel, the model logically
associates this feature with the class. In this instance, the
background also shows highlighted gravel, but the model is
not misled as the highlights are not concentrated enough to be
considered a detection.

VI. CONCLUSION

Our research highlights the significant potential of deep
learning models in automating the detection of railway track
defects, thereby enhancing the efficiency and reliability of
railway maintenance. The YOLO series, particularly YOLOv5
and YOLOv9, has demonstrated exceptional performance in
identifying even the smallest cracks, achieving high F1-scores
of 0.92 and 0.91, respectively. This advancement not only
accelerates the inspection process but also ensures a higher
level of safety by detecting potential issues before they become
critical.

Furthermore, our study illustrates how variations in datasets
and the addition of classes can impact the models’ perfor-
mance in detecting cracks and gaps. The incorporation of
Explainable AI techniques provides valuable insights into
the models’ decision-making processes, fostering trust and
facilitating further improvements. Overall, our findings under-
score the transformative impact of advanced machine learning
techniques on railway maintenance, making it more cost-
effective and reliable.

In the future, we aim to focus on field testing, which
includes creating a new dataset and further tuning our model.
Field testing will enable us to develop a more realistic dataset
through consistent data collection methods, leading to a more
specialized model tailored to our use case and improved
performance.

ACKNOWLEDGMENT

We extend our sincere gratitude to the Engineer Research
and Development Center for their generous support and fund-
ing.

REFERENCES

[1] X. Gibert, A. Berry, C. Diaz, W. Jordan, B. Nejikovsky, and A. Tajaddini,
“A machine vision system for automated joint bar inspection from a
moving rail vehicle,” in ASME/IEEE 2007 Joint Rail Conference and
Internal Combustion Engine Division Spring Technical Conference, 03
2007.

[2] L. Zhuang, L. Wang, and Z. Zhang, “Automated vision inspection of rail
surface cracks: A double-layer data-driven framework,” Transportation
Research Part C Emerging Technologies, vol. 92, p. 258–277, 07 2018.

[3] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in IEEE conference on com-
puter vision and pattern recognition, 2016, pp. 779–788.

[4] Z. Zheng, H. Qi, L. Zhuang, and Z. Zhang, “Automated rail surface
crack analytics using deep data-driven models and transfer learning,”
Sustainable Cities and Society, vol. 70, p. 102898, 03 2021.

[5] Y.-A. Hsieh and Y. J. Tsai, “Machine learning for crack detection:
Review and model performance comparison,” Journal of Computing in
Civil Engineering, vol. 34, no. 5, 2020.

[6] X. Li, Q. Wang, X. Yang, K. Wang, and H. Zhang, “Track fastener
defect detection model based on improved yolov5s,” Sensors, vol. 23,
no. 14, 2023.

[7] J. Fu, X. Chen, and Z. Lv, “Rail fastener status detection based on
mobilenet-yolov4,” Electronics, vol. 11, no. 22, 2022.

[8] Y. Min, B. Xiao, J. Dang, B. Yue, and T. Cheng, “Real time detection
system for rail surface defects based on machine vision,” EURASIP
Journal on Image and Video Processing, vol. 2018, no. 1, 2018.

[9] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in IEEE conference on computer vision and pattern
recognition, 2016, pp. 770–778.

[10] M. Hussain, “Yolov1 to v8: Unveiling each variant–a comprehensive
review of yolo,” IEEE Access, vol. 12, pp. 42 816–42 833, 2024.

[11] A. Vijayakumar and S. Vairavasundaram, “Yolo-based object detection
models: A review and its applications,” Springer Multimedia Tools and
Applications, pp. 1–40, 2024.

[12] P. Jiang, D. Ergu, F. Liu, Y. Cai, and B. Ma, “A review of yolo algorithm
developments,” Elsevier Procedia computer science, vol. 199, pp. 1066–
1073, 2022.

[13] B. Dwyer, J. Nelson, and T. Hansen, “Roboflow (version 1.0),” 2024.
[Online]. Available: https://roboflow.com

[14] S. Theocharis, “Easy explain,” 2024. [Online]. Available: https:
//github.com/stavrostheocharis/easy explain

[15] T. Group, “Railway crack detection dataset,” Online, 2024, visited
on 2024-09-04. [Online]. Available: https://universe.roboflow.com/
thesis-group/railway-crack-detection

[16] T. Solution, “Railwaytrackcrackdetection dataset,” Online, 2022, visited
on 2024-09-04. [Online]. Available: https://universe.roboflow.com/
technofly-solution/railwaytrackcrackdetection

[17] V. Chennai, “Track crack damage detection dataset,” Online, 2023,
visited on 2024-09-04. [Online]. Available: https://universe.roboflow.
com/vit-chennai-japsi/track-crack-damage-detection

[18] S. Hossain, S. I. Eunus, A. Adnan, and A. Ridwan, “Railway track
fault detection,” 2021. [Online]. Available: https://www.kaggle.com/
dsv/1884733

[19] C. Ranganath, “Railway track fault detection dataset,” Online, 2023,
visited on 2024-09-04. [Online]. Available: https://universe.roboflow.
com/chinmay-ranganath-ohlji/railway-track-fault-detection

[20] S. I. Eunus, A. Adnan, S. Hossain, and A. Ridwan,
“Railway track fault detection,” 2021. [Online]. Available: https:
//www.kaggle.com/datasets/salmaneunus/railway-track-fault-detection?
select=Railway+Track+fault+Detection+Updated

[21] S. T. Project, “Damage detection in tracks dataset,” Online, 2023,
visited on 2024-09-04. [Online]. Available: https://universe.roboflow.
com/system-thinking-project-4rfww/damage-detection-in-tracks

