
A Feasibility Study of Real-Time Image
Processing Techniques for Small Flying Object

Detection in Drones
Neil Loftus∗, Cade Parlato∗, Amelia McGinty∗, Furkan Kizilay†, and Husnu S. Narman∗

∗Department of Computer Sciences and Electrical Engineering, Marshall University, USA
†Manisa Celal Bayar University, Turkey

Email: {loftus6, parlato2, mcginty2, narman}@marshall.edu, †190315027@ogr.cbu.edu.tr

Abstract—Drone usage is increasing significantly in our daily
life, from military to delivery purposes. Although drones are
also used to detect objects by using different techniques, they
are limited to detecting flying small objects such as birds and
responding quickly not to cause unintended collisions while
flying at high speed. In this paper, we investigate the feasibility
of using machine learning and image processing methods in
drones while detecting birds mid-flight and responding to ensure
their safety. This Real Time Bird Detection system (RTBD) is
designed to detect birds so that proper response or evasive
action can be taken by the drone. To avoid erroneous responses
and observe the auto-behavior of drones while acting not to
collide, we have developed an application with a graphical
interface to easily control the drone’s video feed and process that
information using a machine-learning model. The application
also has the capability to detect if a bird is close enough to
interfere with the drone’s flight path. Our test results show
that the drone identified bird images within a 50-millisecond
window of time, with Precision exceeding 96%, when Confidence
exceeded 80%.

Index Terms—Drones, Object Detection, Machine Learning.

I. INTRODUCTION

The influx of drones and similar devices has drastically
expanded the need for sophisticated small-craft aeronautics.
Amazon and other logistics companies aspire and expect
to use unmanned drones for more efficient and accessible
deliveries. However, drone technology applications must ad-
dress visual identification with subsequent drone response
issues. Drones must be both compact and energy efficient,
particularly for drones that maintain long-distance flight
with considerable speed. Drone interaction with birds is
an important scenario that accents these points. Unintended
drone collisions with small clusters of birds and birds of prey
mistaking drones for smaller birds represent two scenarios
where both the drone could be damaged and the bird injured.
These and other issues must be addressed before drones are
used en masse, to avoid harm to wildlife, drones, and cargo.

There are other technological options, such as LiDAR and
SONAR, employed for detecting aerial objects. However,
these technologies require specialized sensor equipment. Im-

age processing has the advantage of requiring only a video
camera, which is often a standard feature on commercial
drones. A trained video image processing system that im-
plements machine learning techniques can precisely identify
objects of concern and label them. There have been several
studies that used machine learning and image processing to
detect and differentiate birds from images, both on the ground
and on drones [1] [2]. In these studies, image processing
systems were fed sample images of birds and were trained
to detect if an image or video contained any birds.

In many ways, object detection speed versus detection
accuracy is the major challenge. This dichotomy is epito-
mized through the use of local or cloud computing with
local calculation constrained by the onboard computer. More
powerful hardware results in faster object detection speeds,
however more powerful hardware may result in an increase
in weight and power consumption that the drone can no
longer support. This can be circumvented through the use
of cloud computing [3]. Rather than designing the detection
system to be completely on the drone, it may instead be
operated remotely through a ground station. While this has
the major advantage of allowing for the use of far more
powerful computer hardware, it has several disadvantages.
Primarily, cloud computing requires remote connectivity to
the drone, and while in many cases the drone would already
be connected to a ground station, this introduces an element
of latency that causes decreases in object detection speed.

A balance can be obtained through the process of edge
computing, which involves handling some information lo-
cally and some on the cloud, in order to minimize time delay
due to latency and hardware strength [4], [5]. Therefore, a
trade-off model that decides whether to make a decision on
the cloud, edge, or drone should be implemented. The aim of
this paper is to contribute to the field of aeronautic safety in
small and micro-autonomous drones by examining real-time
object detection.

The objective of this paper is to investigate the feasibility
of using real-time Image processing to detect small flying



objects in small to micro drones. The key contributions of this
paper are as follows: (i) The suitable model for bird detection
in small and micro drones out of main object detection
algorithms is determined, (ii) the dataset to train and test the
determined bird detection model is created, and the model is
analyzed under two test settings based on with and without
Graphics Processing Unit (GPU), (iii) we further analyzed the
explainability of the machine learning model while detecting
birds by using Shapley Additive Explanations (SHAP) which
is a well-known strategy in Explainable Artificial Intelligence
(XAI), and (iv) finally, we developed the application with
GUI to observe real-time prediction and behaviors of drones
in real-time.

The rest of the paper is organized as follows: Section II
summarizes the related work. In Section III, the machine
learning model with analysis are explained. In Section IV, we
discuss RTBD’s graphical user interface (GUI) to control and
display information. Finally, Section V has the conclusion
and our plan for future work.

II. RELATED WORKS

There is a significant amount of research works on object
detection with drones. In [6], the authors propose a novel
method to improve object detection from drones, which face
challenges such as tiny-scale objects, uneven distribution of
objects, and environmental variations. The method consists
of a global-local detection network, a self-adaptive region-
selecting algorithm, and a local super-resolution network.
In [7], the authors present a framework for evaluating the
performance of drone-based object detection algorithms,
considering various factors such as flight duration, camera
resolution, and altitude. They show that the flying altitude and
camera resolution have a significant impact on the accuracy
of the object detection algorithm. In [8], the authors describe
an object detection system using deep learning for drone
delivery of medical aids. They use MobileNet and Single
Shot Detector framework to detect and locate objects in video
streams from drone and stereo cameras. In [9], the authors
show an approach to detect and track objects for a drone
using Convolutional Neural Network (CNN) in a Parrot AR
Drone 2. In [10], the authors introduce Pareto Refocusing
Detection (PRDet) to detect objects by focusing on the
challenging regions that contain difficult objects, such as
small or occluded ones. It uses a reverse-attention mechanism
to find these regions and a region-specific context-learning
module to enhance their features.

Due to You Only Look Once (YOLO)’s features such
as compatibility and faster training time, many versions of
YOLO were proposed [11], and their versions were also
improved based on the usage scenarios such as drones [12].
In this paper, we use YOLOv7 and its versions due to its
prediction speeds. Interested readers can learn more details

about the new methods and their performances on object
detection from [13], [14]

III. MACHINE LEARNING MODEL WITH ITS ANALYSIS

This Real Time Bird Detection system (RTBD) was trained
using computer vision principles and practices sometimes
identified as Objection Detection. During the bird detection
process an image, usually a frame of a video, is analysed
to label and find the position of each bird in the image.
Object Detection is facilitated through the use of machine
learning, specifically neural networks. The machine learning
training focused models were executed via a process known
as Supervised Learning. In supervised learning, the model
is provided with a very large amount of labeled data during
training, which is used to adjust internal prediction weights.
After several iterations of training, the model is able to
apply labels to unlabeled data, which is key for object
detection [15]. In addition, existing published models provide
checkpoints that our used as the basis for the RTBD, through
a process known as transfer learning [16].

The model(s) employed for this RTBD system training
included versions of Yolov7 and Yolov7-Tiny. This selection
was primarily due to its speed of prediction compared to
other models available at the time [17]. However, before
training could occur, the training data sets needed were
acquired using publicly available datasets from the machine
learning website, Kaggle [18]. Two different datasets were
used, one of bird images and a second data set of empty skies,
which is used to decrease false positive predictions. As these
datasets are unlabeled, each image used for training had to be
labeled by hand. This was accomplished with a Python GUI
application, labelimg [19]. After training the models, test data
was used to determine the average time needed to identify
each bird in the image. Additionally, two different models
were trained with Yolov7-Tiny; one had negative images,
one did not. In this case, negative images refer to sample
data that is unlabeled and contains no objects to label. In
addition, analysis was performed both with and without a
graphics processing unit (GPU).

The model trained with Yolov7 took an average of 15.5
milliseconds (ms) per image with the GPU, and 226.8 ms
without the GPU (only CPU prediction). In comparison, the
model trained with Yolov7-Tiny (without negatives) as a base
took an average of 5.0 ms per image with the GPU and
45.3 ms without the GPU. Similarly, the model trained with
Yolov7-Tiny with negative images took an average of 5.1
ms with the GPU and 46.2 ms without. Although there was
minimal difference between the two Yolov7-Tiny models,
the model with Yolov7 took, on average, about 3 times as
long with GPU and around 5 times as long without GPU.
These results showed that Yolov7-Tiny performs faster for
the benchmark dataset in both cases, but especially without
GPU. These results are heavily dependent on the specific



hardware being used to run the application. For these tests,
a computer with a GTX 1060 dedicated graphics card was
used. Without dedicated graphics, the average time would be
much longer. Fig. 1 illustrates average speed per image for
the models, with and without GPU assistance.

Fig. 1. Average speed per image for the models, with and without GPU
assistance.

A. Precision and Recall
Several metrics were collected during the training and

testing process; Precision, Recall, F1 score and Confidence.
Precision (P), the percentage of positive predictions that were
identified correctly, is calculated as the number of True Posi-
tives divided by the sum of the True and False Positives (TP)
/ (FP + TP). This ratio of values represents what percentage
of predictions made by the model are actually what the
model identified them as. Recall (R) is the percentage of
labeled samples in the data that were properly identified. It
is the percentage of objects identified that should have been
identified and is the ratio of True Positives divided by True
Positives plus False Negatives (TP) / (TP + FN) [20]. F1
score is a composite of these two attributes and serves as
a more general evaluation of the model. F1 is calculated as
twice the ratio of the product of the Precision and Recall
values divided by the sum of those individual values. (2 *
((P*R)/(P+R)) [21]. Confidence refers to the percentage the
model outputs to describe how certain it is in its prediction.

Respectively, Figs. 2 and 3 show Precision and F1 over
prediction Confidence. These graphs indicate the accuracy of
the models as they make more confident predictions. For the
RTBD, low Confidence predictions are discarded, and these
graphs only display predictions with a minimum Confidence
of 80 %. Above 80% Confidence, the models resulted in
1.0 or 100% Recall for all values. This demonstrates there
was no FN among the test data, meaning the model never
missed birds that should have been detected. However, the
same cannot be said about Precision, meaning FP are still
present.

The RTBD test data represents limited conditions, and
in an actual drone flight, False Negatives are more likely;

Fig. 2. Precision over Confidence, per model

Fig. 3. F1 over Confidence, per model

however these ideal results still bode well, especially the
Yolov7-Tiny employed model with negative images. Since
Recall is constant, Precision serves as a better quantify-
ing metric for expected RTBD behavior. Yolov7-Tiny with
negative images had noticeably higher Precision values for
all Confidence values. Among the test data, a Confidence
of over 90% correlates with a Precision of 99% or higher.
While Yolov7 had a precipitous increase in Confidence as its
value approaches 90%, Yolov7-Tiny with negative images has
higher Precision at 80% Confidence and quickly exceeds 98%
Precision by the 85% Confidence level. This better Precision
at lower Confidences is likely due to the inclusion of negative
images, decreasing false positives.

The Yolov7 model produced the worst Precision and F1
values, this was likely due to less experimentation with
training settings. Through a combination of fast detection
time and high Precision, Yolov7-Tiny was selected for RTBD
implementation. The base model, Yolov7, is capable of
identifying numerous classes [17]. However, for this pilot
demonstration, this model is trained to identify and respond
to only 2 classes, “bird” and “flock”. Flock refers to a large
collection of birds. This class was added to manage large
numbers of birds. This option rarely came up during testing



and Figs. 2 and 3 show results specifically for the bird class.

B. External Analysis

Looking at the model more deeply, as it is trained with
Yolov7, a large amount of information can be gleaned from
existing publications. The Yolo family of machine learning
models are primarily convolutional neural networks (CNNs),
which have been proven as immensely successful in image
based deep learning [11]. While the exact function has a
number of additional complexities to it, the model is designed
to detect specific features, which assist the model in making
its prediction. However, in these cases, the features in a model
are often abstracted. This is where black box model analysis
tools can be useful. These tools are designed to analyze the
function of the model by repeatedly testing it, as opposed to
internal analysis. The chosen analysis tool was the SHAP
(SHapley Additive exPlanations) explainer [22]. This tool
allows us to load our model and test images to generate
several explanatory graphs, with the primary graph we are
interested in being the super pixel graph [23]. The super pixel
graph shows which super pixels (or square sections of the
image) have increased or decreased effect on the output of the
model. The red / pink corresponds with relative greater effect
and blue corresponds with lesser effect [24]. We ran several
predictions through this analyser to get a better understanding
of how the model functions.

Fig. 4. Detection test with captured bird image

Fig. 4 shows the full frame analysis, with all detections,
classes, and confidences. The sample we provided was one
that we collected from a field test, and had considerable
distance from the camera. This image serves as a difficult
test image due to the distance, and this is represented in the
overall low confidence from the model.

Fig. 5 shows a long distance classification of a single bird.
The detection is almost entirely contained in 4 super pixels.
The super pixel the model finds the most relevant is the
red top left one, which contains the largest wing segment.
Similarly, the bottom left contains a large portion of the bird

Fig. 5. Super pixel graph of first selected bird detection

Fig. 6. Super pixel graph of flock detection

and is marked red. To the right of these two red pixels, we
see two blue pixels, meaning the contents of those two pixels
decreased the confidence in the pixels. We hypothesize that
the model expects the right half of the bird to be located
here, as opposed to the vertical position the bird is actually
taking.

Looking at Fig. 6, which displays a flock detection, the
segments that are highlighted red primarily contain smaller
birds, as opposed to the larger birds, which the model
associates less strongly with flocks. Around the image, we
can see a number of blue pixels. The model only classifies
this flock at 66.5%, which is below our stated standard of
80%. Most likely, this flock is sparse compared to the flocks
in the training set, with the blue pixels representing spots that
the model would expect birds to be present in for a flock.
Many of the flock images in the training set occupied most
of the frame, so it is possible that is a learnt feature that we
may wish to correct.

We hypothesized that the model was primarily looking
for “V” shaped objects that are relatively darker than the
surrounding pixels in the frame. This is an apt description of



how a bird appears for a reasonable distance, so we believed
this hypothesis to be likely. To test this, we created an abstract
illustration to input into the model.

Fig. 7. Super pixel graph of the larger V shape

Fig. 8. Super pixel graph of the star shape
Figs. 7 and 8 show the model’s detection for our illus-

tration. This illustration contains a straight line, a V shape,
a fuller V shape, and a star shape. While the straight line
serves as a control, the other 3 shapes superficially resemble
birds. As such, we expected them to be detected with some
confidence. The straight line in the top left corner was not
detected. This is good, as otherwise the straight lines present
in other objects would cause false positives. The simple V
shape in the top right has the second highest confidence at
96.6%. The fuller V shape in the bottom left has the highest
confidence at 98.4%. Finally, the more complex star shape
in the bottom right corner had the lowest, but still relatively
high confidence of 94.2%.

In the bottom left corner of Fig. 7, is the fuller V shape.
The model values the middle of the wings and the tips more
than the center. This may be due to the V shape being thicker
in the center than expected.

In the bottom right corner of Fig. 8 is the detection for the
star shape. This prediction has a very large amount of red

pixels located in the center and right wing, but far less in the
left wing. It is possible the tail and the right wing make a
V shape that is valued more. Fortunately, the bounding box
still reflects the extent of the bird, so it did not cause the
bird to only be partially detected. This figure has a number
of red pixels interspersed among the frame. While it may be
possible this is due to the model treating the absence as the
lack of a flock, this is not seen in the other samples. As such,
these pixels are likely erroneous and should be corrected.

IV. USER INTERFACE

The RTBD requires a mission focused graphical user
interface (GUI). Based on user selection, this user-interface
displays streamed flight information or the Artificial Intel-
ligence (AI) model results and allows for selection of the
source URL, AI model, and other options for input detection
and stream output. A screenshot of the pilot RTBD user-
interface, written in Python, with code for AI detection and
stream options is presented in Fig. 9.

Fig. 9. A screenshot of our application in use

The GUI for the RTBD uses Python’s standard User In-
terface (UI) framework, Tkinter. Although Tkiner generated
GUIs could be considered outdated, it has many advantages.
These include access to other Python libraries, support for
multiple operating systems, and access to extensive support
resources available on the internet. More development time
is required to make the GUI visually appealing. Ways to
improve its visual design include thoughtful spacing and
placement of UI elements and creative widgets styling. The
module “tkinter.ttk” is used to improve style the UI visual
design. Although the theme built-in to the application is
“clearlooks”, it is easily changed to any other “ttk” theme
without interfering with the application’s function or rewrit-
ing the UI code.

The RTBD has the stream and the console log separate
from the options and input window. The stop/start stream
function and options/input elements are combined into one
window display positioned at the top left of the screen.



When the stream is started, the window for the stream opens
separately and scales in response to changes the window size.
The console log, also resizable and scalable, is positioned
below the stream. The stream options window, which is the
main window and the one that allows for closing the program,
is not resizable. The stream options include selecting a video
URL for the stream to load, getting a live video feed from a
Tello Drone, or from the computer’s built in video camera.
This can either be manually entered or chosen as a preset
from a dropdown menu. Similarly, the machine learning
model that the application uses can be selected from a number
of presets. Additionally, any machine learning model trained
with Yolov7 can be selected using a file system menu [17].
Since any model can be loaded into the RTBD, there are
potential uses beyond bird detection. The GUI allows the
user to configure settings for the video. It has a checkbox for
whether percentage match values are shown on the boxes,
and a scale to select the percentage match threshold (the
minimum detected percentage to be displayed). Finally, the
video settings include a button to select the color of detection
boxes.

V. CONCLUSION

In this paper, we investigate the feasibility of using real-
time Image processing to detect small flying objects in small
to micro drones. Through the use of YOLOv7, we were able
to develop an object detection system for drone cameras that
allows to control it with a graphical user interface. Our tests
showed that as our selected model for the RTBD exceeded
80% confidence, the precision exceeded 96% and the F1
exceeded 98%. Moreover, we investigate and try to explain
why models detect or does not detect certain shape types by
using Shapley Additive Explanations.

For future research, we wish to focus on Object distance
estimation and on-board detection with edge detection to find
a balance between accuracy of predictions and response time.

ACKNOWLEDGEMENTS

The authors thank everyone who provided their feedback
during the writing process. The authors also thank NSF:
Project Works Studio and the NASA West Virginia Space
Grant Consortium to support this research.

REFERENCES

[1] S. Fujii, K. Akita, and N. Ukita, “Distant bird detection for safe
drone flight and its dataset,” in 2021 17th International Conference
on Machine Vision and Applications (MVA), 2021, pp. 1–5.

[2] A. Coluccia, A. Fascista, A. Schumann, L. Sommer, A. Dimou,
D. Zarpalas, M. Méndez, D. de la Iglesia, I. González, J.-P. Mercier,
G. Gagné, A. Mitra, and S. Rajashekar, “Drone vs. bird detection:
Deep learning algorithms and results from a grand challenge,” Sensors,
vol. 21, no. 8, 2021.

[3] R. Buyya, S. N. Srirama, G. Casale, R. Calheiros, Y. Simmhan,
B. Varghese, E. Gelenbe, B. Javadi, L. M. Vaquero, M. A. Netto
et al., “A manifesto for future generation cloud computing: Research
directions for the next decade,” ACM computing surveys (CSUR),
vol. 51, no. 5, pp. 1–38, 2018.

[4] C. Long, Y. Cao, T. Jiang, and Q. Zhang, “Edge computing framework
for cooperative video processing in multimedia iot systems,” IEEE
Transactions on Multimedia, vol. 20, no. 5, pp. 1126–1139, 2017.

[5] R. Zhu, L. Liu, H. Song, and M. Ma, “Multi-access edge computing
enabled internet of things: Advances and novel applications,” Neural
Computing and Applications, vol. 32, no. 19, p. 15313–15316, 2020.

[6] S. Deng, S. Li, K. Xie, W. Song, X. Liao, A. Hao, and H. Qin, “A
global-local self-adaptive network for drone-view object detection,”
IEEE Transactions on Image Processing, vol. 30, pp. 1556–1569, 2021.

[7] P. Petrides, C. Kyrkou, P. Kolios, T. Theocharides, and C. Panayiotou,
“Towards a holistic performance evaluation framework for drone-based
object detection,” in International Conference on Unmanned Aircraft
Systems (ICUAS), 2017, pp. 1785–1793.

[8] W. Budiharto, A. A. S. Gunawan, J. S. Suroso, A. Chowanda, A. Patrik,
and G. Utama, “Fast object detection for quadcopter drone using deep
learning,” in International Conference on Computer and Communica-
tion Systems (ICCCS), 2018, pp. 192–195.

[9] A. Rohan, M. Rabah, and S.-H. Kim, “Convolutional neural network-
based real-time object detection and tracking for parrot ar drone 2,”
IEEE Access, vol. 7, pp. 69 575–69 584, 2019.

[10] J. Leng, M. Mo, Y. Zhou, C. Gao, W. Li, and X. Gao, “Pareto
refocusing for drone-view object detection,” IEEE Transactions on
Circuits and Systems for Video Technology, vol. 33, no. 3, pp. 1320–
1334, 2023.

[11] J. Terven and D. Cordova-Esparza, “A comprehensive review of yolo:
From yolov1 and beyond,” 2023.

[12] O. Sahin and S. Ozer, “Yolodrone: Improved yolo architecture for ob-
ject detection in drone images,” in 2021 44th International Conference
on Telecommunications and Signal Processing (TSP), 2021, pp. 361–
365.

[13] “Object detection on coco test-dev,” accessed:May 31, 2023. [Online].
Available: https://paperswithcode.com/sota/object-detection-on-coco

[14] P. Mittal, R. Singh, and A. Sharma, “Deep learning-based object
detection in low-altitude uav datasets: A survey,” Image and Vision
Computing, vol. 104, p. 104046, 2020.

[15] S. V. Mahadevkar, B. Khemani, S. Patil, K. Kotecha, D. R. Vora,
A. Abraham, and L. A. Gabralla, “A review on machine learning styles
in computer vision—techniques and future directions,” IEEE Access,
vol. 10, pp. 107 293–107 329, 2022.

[16] Y. Quan, Z. Li, C. Zhang, and H. Ma, “Object detection model based
on deep dilated convolutional networks by fusing transfer learning,”
IEEE Access, vol. 7, pp. 178 699–178 709, 2019.

[17] C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao, “Yolov7: Trainable
bag-of-freebies sets new state-of-the-art for real-time object detectors,”
2022. [Online]. Available: https://arxiv.org/abs/2207.02696

[18] “Your machine learning and data science community.” [Online].
Available: https://www.kaggle.com/

[19] “Labelimg,” Dec 2018. [Online]. Available: https://github.com/
heartexlabs/labelImg

[20] J. Davis and M. Goadrich, “The relationship between precision-recall
and roc curves,” in Proceedings of the 23rd international conference
on Machine learning, 2006, pp. 233–240.

[21] J. Gao, Z. Wang, Y. Yang, W. Zhang, C. Tao, J. Guan, and N. Rao, “A
novel approach for lie detection based on f-score and extreme learning
machine,” PloS one, vol. 8, no. 6, p. e64704, 2013.

[22] S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting
model predictions,” Advances in neural information processing sys-
tems, vol. 30, 2017.

[23] P. H. Avelar, A. R. Tavares, T. L. da Silveira, C. R. Jung, and L. C.
Lamb, “Superpixel image classification with graph attention networks,”
in 2020 33rd SIBGRAPI Conference on Graphics, Patterns and Images
(SIBGRAPI), 2020, pp. 203–209.

[24] T. Nowak, M. R. Nowicki, K. Ćwian, and P. Skrzypczyński, “How
to improve object detection in a driver assistance system applying ex-
plainable deep learning,” in 2019 IEEE Intelligent Vehicles Symposium
(IV), 2019, pp. 226–231.


