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Abstract—Android is the most popular Mobile operating
system covering above 70% of all smartphone users. Due to its
popularity, an increasing number of malware applications are
targeting the Android platform, stealing sensitive information,
accessing banking apps, etc. These malware applications can
be detected with the help of machine learning algorithms by
extracting features from those applications. However, previous
attempts use traditional methods which require high memory
overhead and computational power which is not suitable for
continuous real-time data inflow. In this paper, we have pro-
posed an incremental decision tree approach to detect mobile
malware. Our model has achieved an accuracy of 93.33%,
precision of 91.27%, recall of 95.83%, and F1-Score of 93.50%.
Our proposed model can help reduce model retraining time
when new malware samples appear. It also requires less storage
for historical data while retraining the model.

Keywords—Malware, Android, Static analysis, Incremental
learning

I. INTRODUCTION

Android platform is a Linux-based operating system that
dominates the global market with about 3 billion users
worldwide. Around 70% of all smartphone users are Android
users [1]. To keep up with the demands of such a huge
user base, Android applications are being made rapidly in
the mobile ecosystem. Among these applications, there are
many malware applications mixed within. These applications
contain codes that are written intentionally to harm others.
According to statistics of G DATA Mobile Security, more
than 2.5 million new malware applications were identified
in 2021 which is steadily increasing [2]. As we progress
towards the digital age and depend on digital services such as
e-commerce, banking, and medical services, we utilize many
of these services on mobile phones. Average usage statistics
of these digital services through smartphones are shown in
Fig. 1. During the usage of these digital services, we often
leave behind much personal information. These malware
applications steal personal information such as contact info
and banking info. They also use hijacked phones for illegal
activities such as DDoS botnet, crypto mining, and so forth.
Thus, finding these malware applications as soon as possible
is essential for our safety.

Koli [4] proposed a supervised machine learning classifi-
cation method considering request permissions, vulnerable
API calls, and the presence of key information features.
Almahmoud et al. [5] proposed a recurrent neural network-
based approach for extracted features. Wenjia et al. [6]

Fig. 1: Mobile usage in digital services [3].

proposed an SVM-based classification approach based on
similarity scores between benign and malware applications.
However, the existing works [4]–[6] have some common
issues. Most of the works considered only initially extracted
dataset and did not perform actions to solve the unbalanced
class distribution of the dataset. These studies focused only
on a small number of features and did not take into account
other types of features. The main approach of these studies
focuses only on offline machine learning algorithms which
require the complete dataset to be present to retrain the
models each time new data arrives. So the constraints of
storage and computation are apparent.
The main contributions of this paper are as follows:

• We have used SMOTE algorithm to balance out the class
distribution and selected the top hundred features that
can be considered using information gain methods.

• We have implemented an online learning algorithm
using the incremental decision tree that generates a small
dataset based on the trained decision tree which can be
used to retrain the decision tree along with new data.

We first attempted to mitigate the class distribution prob-
lem to create a balanced dataset using SMOTE algorithm.
Then, we selected the top static features for classification.
We implemented the incremental decision tree model and
compared it with other well-known machine learning algo-
rithms named Light Gradient Boosting Machine (LGBM),
Extreme Gradient Boosting (XGBoost), and Decision Tree
(DT) for performance comparison. Applying our incremental



decision tree, we achieved an Accuracy of 93.33%, Precision
of 91.27%, Recall of 95.83%, and F1-score of 93.50%.

Our paper focuses on the premise of the combination
of different features and the usability of online learning
algorithms for practical scenarios where continuously new
malware samples are appearing. Our paper attempts to draw
the attention of researchers to the less-explored topic of
online learning in malware detection.

The rest of the paper is organized as follows. In Section II,
we have discussed the most related studies in this domain. In
Section III, the proposed approach is explained along with
dataset description, data preparation, and data preprocessing.
We have presented our experimental setup and result analysis
in Section IV. Section V contained the conclusion and future
work.

II. BACKGROUND STUDY

A. Terminology

From the network security perspective, Android applica-
tions are divided into two categories named Benign and
Malware. Malware is an application that intentionally harms
other applications or users by gaining unauthorized access
to the system and causing disruption to a computer, server,
client, or computer network to leak private information to
others [7] [8]. Sometimes, these malware applications cause
crucial damage to individuals and online-based businesses or
other institutions.

These malware applications can be detected by malware
analysis techniques. Generally, malware analysis in an An-
droid environment can be classified into two major categories
named static and dynamic analysis. The static analysis ap-
proach, usually considered a lightweight method for mal-
ware classification, basically focuses on file information and
disassembly codes from a malware sample without sample
execution. On the other hand, dynamic analysis approaches
extract behavioral data from applications by executing the
sample in a virtual environment and classifying based on this
extracted logged behavior data [9].

B. Literature Review

The correctness of malware detection depends on feature
selection and applied classification algorithms. There is much
research available for malware detection in the Android
environment.

Koli [4] proposed a supervised machine learning-based
classification method on the extracted features from 120
benign and 150 malicious Android applications consider-
ing three extracted features named Requested permissions,
Vulnerable API calls, and the Presence of key information.
Machine learning algorithms like Support Vector Machine
(SVM), Decision Tree, Random Forest (RF), and Naive
Bayes (NB) are used for the classification of the applica-
tions. Almahmoud et al. [5] proposed a Recurrent Neural
Network (RNN) based approach considering four extracted
features named Permissions, API calls, system events, and
permission rate from a dataset containing both malicious

and benign applications. They compare their model with
traditional machine learning approaches like Support Vec-
tor Machine, K-Nearest Neighbor, Naive Bayes, Random
Forest, and Decision Tree for showing their model’s bet-
ter sides. Thangavelooa et al. [10] proposed an approach
named Datdroid for the classification of Android applica-
tions considering five extracted features named system call,
errors and time of system call process, CPU usage, mem-
ory, and network packets. Surendran et al. [11] proposed a
novel Tree Augmented Naive Bayes (TAN) based Android
malware detection technique by employing the conditional
dependencies among features (API calls, permissions, and
system calls). Li et al. [6] proposed a malware detection
method for Android applications considering an SVM-based
classification approach. They calculated the similarity scores
between benign and malware applications considering suspi-
cious API calls which were used as features in the proposed
approach. Roy et al. [12] proposed a framework based on four
supervised machine learning-based algorithms named Sup-
port Vector Machine, Logistic Regression, Random Forest,
and K-Nearest Neighbors. They considered static API-calls
features named function type, components, intent filters, and
permissions from collected benign and malicious applications
selected from DREBIN and CICInvesAndMal2019 datasets.
Fereidooni et al. [13] proposed a lightweight machine learn-
ing classification-based model to determine malicious appli-
cations from extracted static features. They used the concept
of randomized decision trees (Extra Trees-Classifier) for
determining the feature importance.

C. Gap Analysis

In the above-discussed works, [4], [5], [11] considered only
a few extracted features, [5], [6], [12] considered only tradi-
tional machine learning based model for classification, [4]
considered only a few numbers of apk files for feature
extraction, and [4] considered imbalance dataset for learning
the model. In this work, we want to use an efficient online
machine learning approach for classification on a balanced
dataset considering more types of static features extracted
from collected Android applications.

III. PROPOSED APPROACH

In this section, we discuss the information about the
dataset. We also describe how the static features of the dataset
of applications are extracted, preprocessed, and selection of
important features. Then, we discuss the basic configuration
of the architecture of the proposed model here. The basic
workflow of the model is shown in Fig. 2.

A. Dataset Description

In this paper, we have used the dataset provided by Arash
Habibi Lashkari et al. [14] in their paper titled “Toward De-
veloping a Systematic Approach to Generate Benchmark An-
droid Malware Datasets and Classification”. In their dataset,
they collected benign applications from the Google Play app
market which were published in 2015, 2016, and 2017. They



Fig. 2: Workflow diagram of the Proposed model.

collected the malware application from several sources. Their
dataset consists of around 426 malware applications and 1700
benign applications. The malware applications were grouped
into four major categories named Adware, Ransomware,
Scareware, and SMSmalware. The dataset samples contain
applications from 42 malware families belonging to these
four major malware categories. Overall there were 104,
101, 112, and 109 samples from Adware, Ransomware,
Scareware, and SMSmalware respectively. In our paper, we
have considered 600 benign applications and all 426 malware
applications.

B. Dataset Presprocessing

The preprocessing is composed of three steps: i) data
extraction, ii) feature selection, and iii) data balancing. The
details of the explained in the following subsections.

1) Data Extraction: The dataset contained an Android
application package or apk files of benign and malware
applications. These apk files needed to be extracted to analyze
the source code of the apk files. To perform this activity, we
used a tool called AndroPyTool [15]. AndroPyTool is a data
extraction tool used for extracting static and dynamic features
from the apk files. It uses different types of well-known An-
droid analysis tools such as AndroGuard, DroidBox, Strace,
FlowDroid, and so forth. We used the AndroGuard module
of the AndroPyTool and extracted static features from the
benign and malware files. The extracted data were then
converted into a usable CSV format for further processing.
After the extraction process, the class distribution looks like
Table I

TABLE I: Sample and Feature number of different Apps.

App type No of sample No of features

Adware 119 2109
Ransomware 101 1093
Scareware 111 1955
Smsmalware 107 1577
Benign 599 4504

2) Feature Selection: The dataset is extracted from the
apk files from each group together to form a complete
labeled dataset. The combined dataset contained around 5238
feature columns, and these columns contained eight groups
of features which are apicall, receiver, permission, activity,
service, opcode, apipackage, and systemcommand. From
these extracted groups of features, the top features were

selected. The feature selection process was done based on
the information gained value from each feature.

Information gain is a metric that calculates the reduction
of entropy by transforming a dataset. The gain is defined
in terms of the probability distribution of a variable in the
dataset belonging to one class or another. The information
gain is low for higher-probability events and high for lower-
probability events.

Information gain was calculated on the features of the
dataset in the context of the binary classification. Then a
minimum threshold of 0.03 was used to filter the features.
After filtering, from the remaining five feature groups, the
top 20 features of each group were selected for analysis.

3) Data Balancing: The dataset had an imbalance in the
class distribution. Because of imbalanced data, the model
will learn the decision boundary ineffectively and cause
the model performance to suffer. To mitigate the problem
additional synthetic samples were created. The Synthetic
minority oversampling technique or SMOTE is a type of data
augmentation method for the minority class. This algorithm
works by choosing samples that are in close proximity to
the feature space. Then a line is drawn between them in
the feature space. A random point is chosen between the
samples along the line to create a synthetic sample. After
balancing the class distribution based on binary classification,
the sample distribution is shown in Table II.

TABLE II: Data sample’s class distribution.

Data class Number of samples

Benign 599
Adware 160
Ransomware 159
Scareware 139
Smsmalware 141

C. Proposed Approach

The decision tree algorithms are known for accuracy and
faster train time. Rather than the computationally extensive
neural network models, the decision tree-type models are
often preferred for their usability. However, these tree al-
gorithms need the whole data for building the decision tree.
Therefore, in order to retrain the decision tree for new data,
all past data need to be present. This causes training time to
rise and wastes storage space. As shown in Fig. 3, we have
followed the stated steps to mitigate the problem:

• The decision tree is first trained on available data points.



Fig. 3: Workflow diagram of the incremental decision tree.

• When new data points arrive, the structure of the tree is
analyzed.

• According to the tree structure, a fixed number of data
points are generated to act as the reference of the past
data points.

• The new data points are combined with the generated
data points to form a complete dataset.

• This newly formed dataset is used to rebuild the tree.
Thus, the tree generates a fixed number of data to act as the
reference of past data points and eliminates the need for past
data to be stored. By using the generated data points with
new data points, the past performance of the decision tree is
much affected. The model can act as a platform for streaming
data and integrating the new data without much hassle.

IV. RESULTS

A. Experimental Setup

The dataset has been split into training and testing sets
to ensure that the same data used for training cannot be
used again in testing. 80% data is considered training, and
20% data is considered testing for this work. This work is
conducted on Google Colaboratory having free access to
AMD EPYC 7B12 (RAM: 13 GB, Memory: 109 GB, L3
cache: 6384K, CPU MHz: 2249.998). The frameworks used
in this study are androguard, andropytool, and Scikit learn.

B. Chosen Models for Comparison

In this study, we have compared the performance of
the models of offline and incremental learning algorithms.
We have considered three well-known models named Light
Gradient Boosting Machine, Extreme Gradient Boosting, and
Decision Tree for comparison with our proposed method.
LightGBM is a gradient-boosting framework based on de-
cision trees that increases the efficiency of the model and
reduces memory usage. XGBoost is an optimized distributed-
based gradient boosting library which implements machine
learning algorithms under the Gradient Boosting framework

[16]. A Decision Tree is a tree-structured classifier, of which
internal nodes represent the features of a dataset, branches
represent the decision rules, and each leaf node represents
the outcome. To test and compare the performance of the
models, we used the performance metrics such as Accuracy,
Precision, Recall, F1-Score, TPR, TNR, FPR, and FNR.

C. Performance Metrics

Based on the prediction from the evaluated model, a
confusion matrix is generated. For binary class classification,
the true value is considered 1, and the false is considered 0. A
Confusion matrix Shown in Table III consists of four terms:
True Positive (TP), False Positive (FP), True Negative (TN),
and False Negative (FN).

TABLE III: Basic Structure of General Confusion Matrix.

PREDICTED
NEGATIVE

PREDICTED
POSITIVE

ACTUAL NEGATIVE True Negative False Positive
ACTUAL POSITIVE False Negative True Positive

The performance of the classification models was evaluated
based on several metrics: Accuracy, Recall, Precision, F1-
Score, True Positive Rate (TPR), False Negative Rate (FNR),
True Negative Rate (TNR), and False Positive Rate (FPR)
which are described in Eqns. (1) - (8).

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Recall =
TP

TP + FN
(2)

Precision =
TP

TP + FP
(3)

F1− score =
2 ∗ TP

2 ∗ TP + FP + FN
(4)

TPR =
TP

TP + FN
(5)

FNR =
FN

TP + FN
(6)

TNR =
TN

TN + FP
(7)

FPR =
FP

TN + FP
(8)

D. Result Analysis

In our experiment, we implemented an incremental-based
decision tree. After completing the training phase, we
applied the test data for prediction from the trained model.
From the prediction of the model, we generated a confusion
matrix shown in Fig. 4(a) and calculated other accuracy
matrices from Eqns. (1) – (8) shown in Table IV.



TABLE IV: Result from Incremental Decision Tree.

Metrics Value
Accuracy 93.33%
Precision 91.27%
Recall 95.83%
F1-Score 93.50%
True Positive Rate 95.83%
False Negative Rate 4.17%
True Negative Rate 90.83%
False Positive Rate 9.17%

1) Experimental Result of IDT : From Fig. 4(a), the
trained model correctly predicts 115 positive values out of
120 positive values and correctly predicts 109 negative values
out of 120 negative values. From Table IV, incremental
decision tree performs better on test dataset by achieving an
accuracy of 93.33%, precision of 91.27%, recall of 95.83%,
F1-Score of 93.50%, TPR of 95.83% and TNR of 90.83%.

Fig. 4: Confusion Matrix of (a) Incremental Decision Tree,
(b) LGBM, (c) XGBoost, (d) Decision Tree

2) Comparison With Other Models : We trained LGBM,
XGBoost, and DT models on the dataset considering
the same environment and parameter values used in our
proposed model. Then, we applied these models to test data
the same as our proposed model. The confusion matrix
of LightBGM, XGBoost, and Decision Tree is shown in
Fig. 4(b), 4(c) and 4(d) respectively considering False
value as 0 and True value as 1. From the confusion matrix
of LBGM, XGBoost, and Decision Tree, we calculated
different metric values shown in Table V from Eqns. (1) – (8).

The comparison among different calculated metrics is
shown in Fig. 5:

• Incremental decision tree’s accuracy value (93.33%) is
higher than the other three compared model’s accuracy
value (LGBM : 92.92%, XGBoost: 92.92% and DT:
89.58%). Considering the accuracy value, the incremen-
tal decision tree performed better.

Fig. 5: Comparison of different metric values.

• Incremental decision tree’s precision value (91.27%)
is lower than other models’ precision value (LGBM :
96.75%, XGBoost : 94.57% and DT: 91.47%). Consid-
ering precision value, the incremental decision tree did
not perform well.

• Incremental decision tree’s recall value (95.83%)
is much higher than LGBM’s (90.15%), XGBoost
(92.42%) and DT (89.39%). Considering recall value,
the incremental decision tree performed very well.

• Incremental decision tree’s F1-Score (93.50%) is higher
than LGBM (93.33%), XGBoost (93.49%) and DT
(90.42%)

Fig. 6: Comparison of True and False prediction.

True Positive Rate (TPR) and True Negative Rate (TNR)
are linearly proportional to the model’s performance but False
Negative Rate (FNR) and False Positive Rate (FPR) are
inversely proportional to the model’s performance. From Fig.
6, We can see that:

• Incremental decision tree’s TPR value (95.83%) is much
higher than LGBM (90.15%), XGBoost (92.42%), and
DT (89.39%)’s value. Considering the TPR value, the
incremental decision tree performed very well.

• Incremental decision tree’s FNR (4.17%) value is much
lower than LGBM (9.85%), XGBoost (7.58%), and
DT (10.61%)’s value. Considering the FNR value, the
incremental decision tree performed very well.



TABLE V: Result of compared models.

LBGM XGBoost DT
Accuracy 92.92% 92.92% 89.58%
Precision 96.75% 94.57% 91.47%
Recall 90.15% 92.42% 89.39%
F1-Score 93.33% 93.49% 90.42%
True Positive Rate 90.15% 92.42% 89.39%
False Negative Rate 9.85% 7.58% 10.61%
True Negative Rate 96.30% 93.52% 89.81%
False Positive Rate 3.70% 6.48% 10.19%

• Incremental decision tree’s TNR value (90.83%) is lower
than LGBM (96.30%), XGBoost (93.52%) but higher
than DT (89.81%)’s value.

• Incremental decision tree’s FPR (9.17%) is higher than
LGBM (3.70%), XGBoost (6.48%) but lower than DT
(10.19%)’s value.

Overall our implemented model performed better on our
balanced dataset than other compared traditional machine
learning algorithms.

V. CONCLUSION

In this work, we have proposed to detect malware in
the Android environment using an incremental learning ap-
proach. We have implemented an Incremental Decision Tree
for better applicability in real-time data scenarios. The incre-
mental model’s computational resource cost is lower than
other traditional machine learning models’ computational
resource cost. For understanding our model’s performance
over traditional machine learning models, we have compared
our model with three well-known models named LGBM, XG-
Boost, and DT. Our Model performs better on the accuracy,
recall, F1-score, TPR, and FNR values but does not perform
better on precision, TNR, and FPR values.

Due to the computation capacity, we used only a small
dataset in this paper. We would like to work with a much
larger collection of applications in the future and use dynamic
features to detect malware.
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