The Cybersecurity Packet Control Simulator:
CSPCS

Neil Loftus*, Cameron Green, and Husnu S. Narman®
Department of Computer Sciences and Electrical Engineering, Marshall University
Huntington, WV, United States of America
Email: *loftus6é @marshall.edu T green320 @marshall.edu tnarman @marshall.edu

Abstract—Games have been used as a learning tool for
centuries. Through game-based learning, students actively learn
and practice the right way to do things. A project team at
Marshall University created a web-based application to visually
represent networking and cybersecurity concepts by using
“gamification” techniques such as linear levels and visualization.
The goal of this project is to assist the instruction of Computer
Science students in internetworking and cybersecurity subjects
through game-based learning and measure its effectiveness. The
application has users control a simulated network environment
and direct computer messages to explain internetworking and
cybersecurity concepts. An experiment was conducted with
a test group taking a pre-test and post-test after using the
applications. These two sets of data were compared and an-
alyzed to measure the effectiveness of the application. Testing
results shown that the application improved the self-evaluated
confidence of students by approximately 45%, regardless of the
students’ self-reported learning style.

Index Terms—Cybersecurity, Internetworking, Simulation,
Education, Computer Science

I. INTRODUCTION

In the modern age, the field of cybersecurity is one of
the most critical concepts for the sake of national security.
However, due to its complexity, this field is often challenging
for students to get into and understand [1], [2]. A major
factor in cybersecurity being difficult to approach is inequity
in computer science education. Research has shown that to
broaden participation of underrepresented groups in computer
science careers, there must be equity in computer science
education [3]. In this circumstance equity is expanding access
to computer science education to all students, regardless of
race, gender, disability status, or socioeconomic status. One
source of inequity the paper points out is specifically related
to how comfortable any given teacher is in teaching students
about computer science. Many teachers do not have much
experience in computer science education, and this can lead
to students from those schools having less understanding and
exposure to computer science concepts, than a student from
a different school [3].

One remedy to this issue is usage of “Open Education
Resources” (OER). An OER tool can be used by educators
and students without need for purchase or permission [4].
The OER movement can help combat education inequity, by

providing students with educational material that they might
have not been able to receive otherwise. Students learning
about computer science in general, learning alone cyberse-
curity, often struggle to grasp the more abstract and have
difficulties in visualizing ideas of the subject particularly,
as traditional lecture formats can be ineffective for some
students as they cannot connect the ideas without seeing
the process in action. As such, a visual demonstration can
often provide students with the piece they are missing to
understand the topic. While visual ideas can be demonstrated
in drawing or with videos, for computer science, hands-
on simulations have several benefits over other visualization
forms. Most importantly, they allow students to learn at their
own pace and experiment with different elements of the topic.
These simulations can also make ideal OER resources, as
when done correctly, the only requirement for use is a device
that can access the application.

Previous research has been done into the effectiveness of
visual programs for Computer Science learning. In a project
by Narman et al., an interactive augmented reality application
was developed to teach students about data structures. Of
the students tested, 54% preferred the AR program over the
alternatives offered [5]. Research into gamification, which is
the technique of taking elements for games and using them
in another context, has shown it as both effective for teaching
by Buckly et al. [6] and preferred by students, as showed by
Kingsley et al. [7]. In an educational context, an example of
gamification would be turning whatever concept you wish to
teach into a game and having students use it.

There have been several other programs created to explain
cybersecurity concepts to students. These range from general-
purpose education websites, such as Khan Academy [8], to
video games focused based around cybersecurity, such as the
ones developed by Texas A & M and CISA [9], [10], and
to more utilitarian simulations, such as CS4G Netsim and
Visual Algo [11], [12]. CSPCS is most similar to the third
category of programs, using elements from games but being
a simulation to introduce the fundamentals [13].

The objective of this paper is to create a tool to teach
internetworking and cybersecurity with hands-on activities
and then measure the effectiveness of “gamification” for

internetworking and cybersecurity education. This was done
by creating a visual application to teach internetworking and
cybersecurity, called “CSPCS” or “the Cybersecurity Packet
Control Simulator.” The application was then made publicly
available on the internet, with the link to the application
itself provided in references [13]. Afterward, a group of
students were given a pre-survey, asked to use the application,
and then given a post-survey upon finishing the application.
These surveys asked users to rate the understanding of the
topics presented from 1 to 5, with 1 being the least and 5
being the most understanding. Additionally, students were
given an assessment quiz to measure how well they retained
information correlated with their preferred learning style.

The results indicate students, on average, had a percent
change of 45%, or a linear percent increase of 20% (from
2.21/5 to 3.21/5) in their rating of understanding after using
the program on their first try. Students, on average, achieved
a score of approximately 90% on the assessment score,
with no strong correlation between learning style and better
performance. Finally, by evaluating qualitative feedback from
students, the main changes that could be made to the appli-
cation to improve its effectiveness are: to add more detailed
explanations, and more straightforward instructions and to
update the user interface.

With these results it is important to acknowledge that
this application was designed with a certain amount of
assumptions about the audience that would be using it. Such
assumptions include that the user would be a high school
graduate attending college, that they would be fluent in the
English Language, that they would not be visually impaired,
and they would have access to a computer and internet
connection. While this tool can be beneficial to people who
are in this audience, it is limited in scope and may not
be effective for users outside this demographic. In future
iterations of this project, we have the opportunity to expand
the audience in a number of different ways, such as providing
accessibility or language options. Another option to expand
the audience of users would be to create a mobile device
supported version of the application, to allow users who have
a mobile device but not a traditional PC to use to program.

The rest of the paper is organized as follows: Section II.
describes the development process of the application. Section
III. explains the implementation of the application, as well as
demonstrates the system of input and functionality. Section
IV. compares the application with some of the previous
works that teach the same subjects, and section V. explains
the results in more detail. Finally, section VII. presents
concluding remarks with future works.

II. DEVELOPMENT
A. Tools Utilized

The primary application we used for development was
Unity 3D [14]. Unity was primarily used due to its ability

to easily export to most platforms. Since the primary target
is students, web browsers were determined to be the most
accessible platform. In this case, CSPCS was exported to
HTML 5 using the Unity engine’s WebGL support [15]. This
tool bundled the program as a website without having to
refactor the source code to support browsers. Unity does not
have inbuilt support for hosting, so Heroku was chosen to
host the website online [16].

B. Content Overview

The application was broken down into six distinct levels,
each related to internetworking or cybersecurity. Each level
displays a distinct concept, with many building upon ideas
established in the previous levels. Ideas are progressively
introduced to avoid overwhelming and confusing the user.
The first level is the most simple, introducing the idea
of the simulated network and the system of control. The
second level provides the user with a much more extensive
example network but keeps the concepts relatively simple.
This level focuses on general graph theory, such as how to
find the best path between two vertices [17]. The third level
introduces more graph theory concepts, such as weighted
graphs, which are graphs with numerical costs associated
with them [18]. This level primarily serves to demonstrate
how weighted graphs can affect routing and change what the
most efficient path is. The fourth level focuses more on the
network algorithms, demonstrating how the routing algorithm
used in early versions of the internet predecessor Arpanet
functioned [19]. The fifth level is about pinging, which is
where the time it takes for two devices to communicate is
determined by sending a message (or a ping) between the two
devices and back [20]. Unlike the first five levels, the sixth
level is entirely cybersecurity-based. This level demonstrates
a man in the middle attack, where a message between two
devices is intercepted by a malicious third party, viewed
and/or modified, and sent to the original destination without
detection [21].

C. Design Challenges

Since the program was designed to teach cybersecurity,
internetworking, and routing, establishing a system for rout-
ing between devices was key. Before routing could be es-
tablished, we first needed a way to represent a computer
network. The simplest and most effective way we discovered
this was to represent a network as a graph and apply graph
theory concepts to it. A graph is a series of vertices connected
together by edges [17]. To represent this in code, we used
a linked list or node-based approach, where each “node”
has a list of other “nodes” that had connections. Before the
algorithm could be selected, some important factors about
the networks had to be considered when translated to a
graph. The first is that the networks were not binary; nodes
could have any number of connections, from O to the total

number of other nodes [22]. The second is that the graph
was undirected, meaning that each connection was two-way.
Due to the approach taken, the connections were inherently
directed, as a node could be connected to a different node,
but that node did not have to be connected back. To fix this,
the nodes were programmed so that if one ever connected
to a node, that node would always connect back. Finally,
the graph would have to support weighted connections,
where nodes had numerical costs associated with them [18].
Because of this, the algorithm had to be one that would
always take the path with the smallest total numerical value
associated with it. While not every graph features weighted
connections, the advantage of using an algorithm based on
numerical costs is that it can also find the shortest path
of an unweighted graph. For any unweighted graph, each
connection is treated as “1”, and since the algorithm will
always take the path with the lowest numerical value, this
will take the path with the least number of steps.

D. Routing Algorithm

The chosen algorithm for CSPCS was the original al-
gorithm developed for Arpanet in 1969. Because of its
simplicity and it is one of the oldest algorithms used for
networking, it was an ideal choice for explaining the baseline
concepts of internet routing. The basis of this algorithm is the
routing table, where each node has a list of every other node
it has discovered, the total cost it takes to reach that, and the
next node it must travel to eventually reach its destination
[19]. The algorithm begins by adding all adjacent nodes into
its routing table. The algorithm then performs a message
function, where it compares its routing table with the routing
table of each adjacent node. If there is a destination that has
not been discovered yet, it is added to the routing table. If
that destination has been discovered, it compares the metric
costs and uses the smaller of the two. This is repeated until
every node is discovered. Once complete, the shortest path
will be found for both weighted and unweighted graphs.

III. IMPLEMENTATION

A. Main Menu

Fig. 1 shows the main menu of CSPCS. The main menu
only features the necessary buttons, with the primary func-
tion, the level select, in the center. Upon clicking on the level
select, the user is given a dropdown menu where they can
scroll through and choose the level they wish to go to [13].

PWS-CSPCS

Fig. 1. Main Menu of CSPCS.

B. Simulated Environment

Fig. 2 shows an example of a level in CSPCS. On the
left is the input panel, with several sections: control, info,
objectives, questions, and help panels. On the right is the
simulated network environment itself. The user primarily
performs input on the left side of the screen, which affects
the network on the right [13].

Control Panel ||
Send to:

| Questions
Objectives
Reach 131.45.57.170

Fig. 2. Level 1 of CSPCS with a sample illustration.

C. Control Panel

While normally a computer network is controlled by a
command-line interface, the program uses a simplified button
interface so students can focus on the core concepts, as shown
in Fig. 3. Fig. 3 illustrates element 1 (labeled in red), where
the user can input the IP address of the device they are trying
to reach. Similarly, element 2 is the input to specify what
device is sending the message. For earlier examples, element

2 is excluded to avoid overwhelming the user with options.
For later levels, more input fields are provided, such as to
control how many packets the device sends. Element 3 is an
eyedropper tool that allows the user to select an IP address
by clicking on the device rather than text input. Element 4
is a button that allows the user to freeze the simulation so
the user can inspect the packets in detail. Finally, element 5
is the send button. This begins the simulation with the data
inputted [13].

Control Panel "
Send to:

Enter text... 1.

Send from:

Enter text... 2.

Fig. 3. Control Panel for CSPCS.

D. Selection Panel

Fig. 4 shows the selection panel. The bottom half of the
input panel has options on what it can display based on
the selection. The selection panel includes Info, Goal, and
Help options to be selected. Each selected option has a sub
options. As shown in Fig. 4, Goal selection has Objectives
and Questions. Clicking any of the buttons will change the
function of the bottom panel [13].

Fig. 4. Selection Panel for CSPCS.

E. Info Panel

The info panel has two primary functions, as shown in Fig.
5. The first is showing what a packet’s information, such as its
destination, sender, and message. Additionally, the user can
select a device by clicking on it. Afterward, the dropdown
menu will display the list of destinations available for that
device in its routing table. When one of these IP addresses is
clicked, the path from the selected device to its destination
will be highlighted in the main application [13].

Packet Message:

From:
to:

145.63.65.122 Vv

Fig. 5. Information Panel for CSPCS.

FE Goals: Objective Panel

The objective panel (as shown in Fig. 6) shows the goals
that the user must meet to complete the level. This panel also
features the button to move to the next level. The user can
move to the next level without completing the level if they
get stuck. During development, the ability to move to the next
level was locked away until all objectives and questions had
been correctly completed. This was changed to allow users
to move at any time [13].

Objectives
Have a packet travel the

path with the highest total
cost, while still being the
shortest path to that

Next Level

Fig. 6. Objective Panel for CSPCS.

G. Goals: Question Panel

The question panel provides the user with a series of
questions about the content presented in CSPCS, as shown
in Fig. 7. Similar to the control panel, this panel uses a
text input system with an eyedropper button for convenience.
Users have infinite attempts to complete a question, and the
program will give either a red X or check-mark to denote
if the answer was incorrect or correct. When a question is
completed, a new one will be given until they have all been
completed [13].

What device has the most
connections?

Fig. 7. Question Panel for CSPCS.

H. Help Panel

The final user interface element is the help panel (Fig.
8). At the start of the level, users are shown a brief pop-up
panel with information about the level. Users can click on
the help button to reopen this panel. The reset button resets
all progress on the current level and returns it to its original
state. This can be necessary to complete later levels. Finally,
the main menu button can be selected to return users to the
title screen, allowing them to select a different level [13].

Help

Reset

Main Menu

Fig. 8. Help Panel for CSPCS.

IV. RELATED WORKS AND DISTINCTION OF THE
DEVELOPED TOOL

A. Khan Academy

Khan Academy’s lessons are divided into many smaller
subjects. Each subject has a few articles and/or videos
that teach people the information, as well as quizzes that
test users’ knowledge. Users can take each subject in any
order they like, and certain subjects can even be skipped
if users know the material. Khan Academy separates the
visual aspects of its lessons from its interactive aspects, while
CSPCS integrates them into each other. Our program has
users answer questions while a visual representation of the
topic is seen in the background. The program will also use
visuals to show the user exactly how their answer is right
or wrong. Another difference between the two programs is
the topics that are being taught. Khan Academy teaches
elementary computer science topics, while CSPCS focuses
explicitly on cybersecurity and networking. CSPCS also goes
more in-depth than Khan Academy on the material being
taught to the users [8].

B. Texas A & M and CISA

Both Texas A & M and CISA have created a collection
of different games on cybersecurity topics. Regarding Texas
A & M, their games are primarily designed for a younger
audience, with the content being more focused on identifying
possible cybersecurity threats, such as phishing links in
emails [9]. While Texas A & M developed their games for
browsers, CISA made all of their games on the app store
and google play store. Like Texas A & M, these programs
are entertaining games first and aim to educate students
on cybersecurity [10]. These games share some topics with
CSPCS but are overall very different.

C. Visual Algo

Visual Algo is a website that provides users with several
different simulations on computer science topics, ranging
from sorting arrays to path-finding algorithms. These in-depth
simulations provide users with accurate representations of the
concepts presented. Unlike the other programs mentioned,
Visual Algo primarily focuses on data structure concepts, not
internetworking or cybersecurity [12]. This is still relevant to
CSPCS since it aims to teach students about data structures
concepts, especially graph theory, as a preliminary to the
internetworking content. Visual Algo features more in-depth
explanations than CSPCS, but it does not use any gamifica-
tion, with it being a completely utilitarian simulation.

D. CS4G NetSim

On the surface, NetSim seems very similar to CSPCS,
but the most noticeable difference is how information is
displayed. CSPCS displays all the relevant information on the
screen at once, while NetSim only displays a little at a time.

For example, both programs display a computer’s IP address
differently. With CSPCS, the IP is right under the computer,
but NetSim requires the user to click on the computer to
display its IP and other relevant information. NetSim will also
obstruct other information like the objectives and the info of
other devices when the computer’s info is displayed. There
is also a major difference in the complexity of users’ inputs.
CSPCS has a simple set of choices that are predetermined
based on what lesson is being taught to the user. NetSim
has the user open up a mini-menu with several different
blanks the user needs to type their answers into, as well as
a dropdown menu for all the IP addresses. NetSim’s menu
stays mostly the same for all its lessons, even if some of the
blanks are not needed in certain cases. The two programs also
have a difference in what they teach. NetSim only focuses
on cybersecurity, while CSPCS teaches other subjects on top
of cybersecurity [11].

V. RESULTS

The application was deployed in a university classroom,
with many of them not having taken any classes on the
topics. Students were given a pre-survey, asked to use the
application, and then given a post-survey after finishing.
The pre-survey asked students to list their grade level and
what type of learner they considered themselves to be (such
as Kinetic, Visual, etc.) Additionally, students were asked
to rate themselves from 1-5 on how well they understood
internetworking, routing, and cybersecurity [23]. The post-
survey [24] had students take a quiz to gauge their retention
of the topics presented. Students were asked to rerate their
understanding scores after using the program [13]. Finally,
students were asked qualitative questions about their opinion
on CSPCS and what they felt could be improved. The sample
size for the data was n = 30, with 8 Sophomores, 8 Juniors,
2 Seniors, and 12 Graduate Students. All data was gathered
via a google forms survey [25].

A. Average Understanding of the Topics

Fig. 9 shows the subject understanding of students. After
using the application, students had a noticeable increase in
their self-evaluated understanding of all three topics pre-
sented. The average score for all three topics was 2.21/5
before and 3.21/5 afterward. This shows an increase of one
point across the board on average and a percent change of
45.21% in students’ self-evaluated confidence [23], [24].

B. Correlation Between Learning Style and Retention

Due to the visual nature of the program, it was hypothe-
sized that users who identified most with the visual learning
style would benefit the most from CSPCS. The majority of
users identified as either visual (n = 16) or kinetic (n = 12),
with only a fraction identifying as auditory learners (n =
2). As shown in Fig. 10, there was no significant difference

Average Understanding, Before and After (From 1-5)

B cCybersecurity [l Networking W Routing

3
| ii i
1

Before

Fig. 9. Graph of students’ self-assessed understanding of cybersecurity,
internetworking, and routing before and after. The left side shows before,
and the right side shows after.

After

in evaluation scores among different learning styles, with
averages of 90% for visual, 88.33% for kinetic, and 90%
for auditory learners. This has a few possible implications.
The first is that the program had similar effectiveness in in-
formation retention among users, regardless of their learning
style. However, recent research has called into question the
importance of learning styles as a concept [26]. Regardless,
the average grade on the retention quiz ignoring learning
styles was around 90%. It is possible that this result was
skewed by having questions that were too easy. Out of the five
questions, two of them had all 30 correspondence answers
correctly. After removing these questions from the average,
the average score drops to 83.33% for visual, 80.56% for
kinetic, and 83.88% for auditory learners. This data still
demonstrates an overall understanding of the content, as well
as little difference between students of different learning
styles [23], [24].

C. User Feedback

Part of the post-survey focused on asking qualitative
questions. This was done to see what users did and did not
like about CSPCS and what could be improved. The data
showed an overall positive reception, as shown in Fig. 11,
with students on average rating the education benefits of
the program at 3.97/5 and interest in using the program if
improved at 4.03/5. Additionally, there was a section where
users were encouraged to type out any specific feedback that
they thought could improve CSPCS. The leading suggestions
we received were to provide more in-depth explanations of
the content, clarify the instructions, and improve the user
interface. Regarding the last suggestion, a few users had
issues that caused the content not to be displayed properly,
possibly due to the browser they were using and its plugins.
Overall, the user-friendliness rating was only 3.17/5, which

Average Score on Evaluation Correlated with Learning Style
1.00

0.75

0.50

0.

o

0.00

Visual AVG (n = 16) Kinatic AVG (n = 12)

Audio AVG (n = 2)

Fig. 10. Graph of quiz results correlated with learning style. Very little
difference was found in scores between the three styles.

was lower than we had hoped. After implementing the
proposed suggestion, we believe that our overall experience
score will rise from 3.67/5 to 4/5 or higher in a future test
[23], [24].

Users' Opinions of CSPCS (From 1-5)

r
I I

5
User Friendiiness Education Benefils Interest in using Overall Experience
CSPCS again

Fig. 11. User opinions of the user friendliness, education value, interest in
using again, and overall experience of CSPCS.

VI. CONCLUSION AND FUTURE WORKS

In conclusion, students who used the application reported
a positive effect on their understanding of all three topics
addressed in the application, with an average percentage
change of 45% from before to after. Additionally, students
responded positively to learning about internetworking and
cybersecurity with a visual application. No strong correlation
was found between learning style and retention of informa-
tion from this program.

The immediate changes planned for this program are based
on the user suggestions. We plan to streamline the user

interface and add more detail about the presented algorithms.
The current version is somewhat abstracted not to overwhelm
the user, but we plan to make the simulation much more in-
depth for additional levels. A significant feature we plan to
add is a simulated command-line interface (CLI) to teach
users how they would perform these operations on an actual
computer.

In addition to the changes based on user feedback, there are
several changes that could be made to broaden the audience
of the application and to expand it for an Information and
Communication for Development (ICT4D) context. The cur-
rent version of this application is designed to assist students
in continuing their computer science education, but currently
that scope only includes an audience that is English speaking,
not visually impaired, and has access to a computer. We
believe that by addressing the limited scope of the current
application and expanding it, the application would be more
effective in narrowing the digital divide. Possible changes
to expand the audience of the application include adding
language options, accessibility options, including a text to
speech mode, and exporting the application to mobile plat-
forms. This last change would address the fact that the current
application requires the user to have a traditional computer
by bringing it to the more common mobile platform.

ACKNOWLEDGEMENTS

We thank the NSF: Project Works Studio, SURE: Summer
Undergraduate Research Experience, and Creative fellowship
programs for this project.

REFERENCES

[1] X. Chen, “Stem attrition: College students’ paths into and out of stem
fields. statistical analysis report. nces 2014-001.” National Center for
Education Statistics, 2013.

[2] D.B. Silva, R. de Lima Aguiar, D. S. Dvconlo, and C. N. Silla, “Recent
studies about teaching algorithms (cs1) and data structures (cs2) for
computer science students,” in IEEE Frontiers in Education Conference
(FIE), 2019, pp. 1-8.

[3] R. Santo, L. A. DeLyser, J. Ahn, A. Pellicone, J. Aguiar, and S. Wortel-
London, “Equity in the who, how and what of computer science edu-
cation: K12 school district conceptualizations of equity in ‘cs for all’
initiatives,” in 2019 Research on Equity and Sustained Participation in
Engineering, Computing, and Technology (RESPECT), 2019, pp. 1-8.

[4] ISKME, “About oer commons,” Online, 2022, accessed: 21-June-2022.
[Online]. Available: https://www.oercommons.org/about

[5] H.S. Narman, C. Berry, A. Canfield, L. Carpenter, J. Giese, N. Loftus,

and I. Schrader, “Augmented reality for teaching data structures in

computer science,” in IEEE Global Humanitarian Technology Confer-

ence (GHTC), 2020, pp. 1-7.

P. Buckley and E. Doyle, “Gamification and student motivation,”

Interactive learning environments, vol. 24, no. 6, pp. 1162-1175, 2016.

[71 T. L. Kingsley and M. M. Grabner-Hagen, “Gamification: Questing
to integrate content knowledge, literacy, and 21st-century learning,”
Journal of adolescent & adult literacy, vol. 59, no. 1, pp. 51-61, 2015.

[8] “Khan academy,” Online, accessed: 19-Apr-2022. [Online]. Available:
https://www.khanacademy.org/

[9] “Cybersecurity games,” Online, accessed: 19-Apr-2022. [Online].

Available: https://it.tamu.edu/security/cybersecurity-games/index.php

“Cybersecurity games,” Online, accessed: 19-Apr-2022. [Online].

Available: https://www.cisa.gov/cybergames

[6

—_

[10]

[11]
[12]
[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]
[23]
[24]
[25]

[26]

E. Atwater and C. Bocovich, “CS4G netsim,” Online, June 2017,
accessed: 19-Apr-2022. [Online]. Available: https://netsim.erinn.io/
S. Halim, “Visualgo,” Online, accessed: 19-Apr-2022. [Online].
Available: https://visualgo.net/en

“PWS CSPCS,” Online, accessed: 19-Apr-2022. [Online]. Available:
https://pws-cspcs.herokuapp.com/

Unity, “Unity user manual 2021.3 (LTS),” On-
line, 2021, accessed: 19-Apr-2022. [Online]. Available:
https://docs.unity3d.com/Manual/UnityManual.html

“WebGL 2.0 api quick reference guide,” Online, 2019, accessed: 19-
Apr-2022. [Online]. Available: https://www.khronos.org/files/webgl20-
reference-guide.pdf

“Heroku,” Online, accessed: 19-Apr-2022. [Online]. Available:
https://www.heroku.com/about

S. C. Carlson, “Graph theory,” Online, Nov 2020, accessed: 19-Apr-
2022. [Online]. Available: https://www.britannica.com/topic/graph-
theory

E. W. Weisstein, “Weighted graph,” On-
line, accessed: 19-Apr-2022. [Online]. Available:
https://mathworld.wolfram.com/WeightedGraph.html

A. Khanna and J. Zinky, “The revised arpanet routing metric,” ACM
SIGCOMM Computer Communication Review, vol. 19, no. 4, pp. 45—
56, 1989.

A. Trivedi, “What is ping?” Online, Sep 2021, accessed: 19-Apr-2022.
[Online]. Available: https://www.geeksforgeeks.org/what-is-ping/

P. A. Grassi, M. E. Garcia, and J. L.
Fenton, “Digital identity guidelines,” Online, June
2017, accessed: 19-Apr-2022. [Online]. Available:
https://mvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-
63-3.pdf

N. Parlante, “Binary trees,” Online, 2000, accessed: 19-Apr-2022.
[Online]. Available: http://cslibrary.stanford.edu/110/BinaryTrees.html
“CSPCS pretest,” Online, accessed: 19-Apr-2022. [Online]. Available:
https://bit.ly/3EDOT94

“CSPCS posttest,” Online, accessed: 19-Apr-2022. [Online]. Available:
https://bit.ly/30ul66W

“Google forms,” Online, accessed: 19-Apr-2022. [Online]. Available:
https://www.google.com/forms/about/

P. R. Husmann and V. D. O’Loughlin, “Another nail in the coffin for
learning styles? disparities among undergraduate anatomy students’
study strategies, class performance, and reported vark learning styles,”
Anatomical sciences education, vol. 12, no. 1, pp. 6-19, 2019.

