Designing Crowdsourcing Software to Inform
Municipalities About Infrastructure Condition

Eric Shoemaker, Harrison Randolph, James Bryce and Husnu S. Narman
{shoemaker30,randolph69,bryce,narman } @marshall.edu
College of Engineering and Computer Sciences, Marshall University, Huntington, WV 25755

Abstract—Determining how to utilize and allocate budgets
for public infrastructure is an essential issue that local gov-
ernments face. For a beneficial budgeting plan to be made
for civil engineering infrastructure maintenance and projects,
a local government needs first to know the condition of its
infrastructure. Without such information, it is not possible to
create a plan that will use funds effectively and address the needs
and desires of the community members. For larger bodies, like
state governments or populous cities, collecting this information
is achievable through the dedication of workforce and surveyors.
However, smaller municipalities can often lack the funds and
the resources. Consequently, this will foster reactive management
of public infrastructure such that information is collected after
an issue occurs and becomes major rather than minor, so
repairs can be more expensive if the damage is significant. This
only applies more strain to the limited budgets. To solve this
issue, crowdsourcing information about the condition of public
infrastructure from the community in the municipality can be
used. Therefore, we developed a crowdsourcing based system to
address this issue. The data will be collected through the use
of public software that will seek to collect data and encourage
users to report about all issues—, not just severe or significant
damages. By receiving reports about all issues, regardless of
severity, municipalities will have the information not only to react
to and fix the damage, but also they may proactively predict,
repair, and prevent severe damages based on timelines of reports
about more minor issues. Moreover, upon the adaptation of this
method proves to be helpful, this research aims to produce and
deploy such software to benefit smaller municipalities.

Index Terms—crowdsourcing, design, reporting, infrastructure

I. INTRODUCTION

Civil infrastructure is an imperative part of all societies,
and it requires a significant amount of social resources [1].
It is the glue that holds together the cultural, environmental,
and social structures that create a more civilized community.
Consequently, smart infrastructure investment and designs
enhance connectivity, productivity, and satisfaction within a
community. Therefore, when a city is engaging in smart
infrastructure design and investments, it is more likely to see
economic success and to attract new residents to keep its
economy growing [2]. This is very important in an age where
cities are competing for investments, talent, entrepreneurs, and
young families [3].

However, making beneficial decisions regarding the use of
allocated funds for public infrastructure is one of the most
important problems that local governments face [4]. It requires
high-cost decision-making and demanding amounts of time
and research in order to determine the locations and severity of

public infrastructure damage [5]. Along with this, community
input should be gathered and considered before the develop-
ment of new businesses and infrastructure into a community.
For a beneficial budgeting plan to be made, the local gov-
ernment needs to know the condition of its infrastructure and
the opinions of members of the community. Although larger
bodies such as state governments and populous cities have the
resources to dedicate a workforce to the collection of data
regarding the condition of their infrastructure, geographically
smaller and less populous municipalities may not have the
funds and/or resources [6].

For small municipalities, a method of solving this issue
is to utilize crowdsourcing to gather this data from people
living in the municipality. If large amounts of community
involvement occur, crowdsourcing would allow for enough
data to be collected at low-cost [7], and it essentially gives
access to a large group of potential workers, all of whom
have a diverse range of skills and experiences within the
municipality [8]. In order to utilize crowdsourcing for this
purpose, a means for those living in the municipality to inform
their local government of issues with public infrastructure must
be established and commonly used.

Generally, issues with public infrastructure are reported by
individuals to the local government owning the infrastructure,
and there are many available methods for anyone to create
such reports. Many cities utilize websites, emails, and phone
lines that allow the community to inform them about public
safety hazards and damages. Also, government infrastructure
organizations in each state, such as the Division of Transporta-
tion [9], provide the public with forms with which to report
roadway issues—such as potholes—on their website, and they
allow people to create claims for reimbursement if these issues
are the cause of damage to personal property.

Besides these options, there have been efforts to enhance
convenience and connectivity to those living in cities of
all sizes. Applications—[10], [11], [12] for examples—have
been developed to allow users to easily and conveniently
report damaged public infrastructure using a phone app. These
applications allow for individuals to submit these issues to
their local governments and allow those living in communities
to see other’s reports and to be informed of the hazards and
damages around them. They also provide the community with
tools to up-vote others’ reports to make an effort to enhance
the relationships of the local government and its people based
on consideration of and response time to the issues presented

by the people.

All of these options successfully allow for the public to
inform the government about public infrastructure, which is
a goal of this paper, but the uniqueness of this paper is to
supply data such that local governments can make beneficial
budgeting decisions for their public infrastructure. Therefore,
simply collecting reports from users after damages have oc-
curred may not be sufficient. Users should be encouraged to
report any damage regardless of its impact or severity, so local
governments have sufficient data to be proactive and address
damages in earlier stages. Along with this, users need to be
encouraged to report often and whenever they see potential
issues rather than only reporting about damages that have
affected them already.

Therefore, the objectives of this paper are to analyze the
usefulness and effectiveness of crowdsourcing as a low-cost
option of data collection for small municipalities and to design
software such that local governments will receive information
in a format that allows them to proactively—, not just re-
actively—manage their public infrastructure.

The key contributions of this paper are:

o Software, which allows users to conveniently report about
public infrastructure and to inform local government, is
designed and tested.

o The ability of the software to collect meaningful and
detailed reports while maintaining convenience and speed
is analyzed through the results of small-scale application
deployment and analyzing each submitted report.

o The overall effectiveness of the collected data in docu-
menting the infrastructure condition of an area and the
ability of such data to be used in proactive infrastructure
management is analyzed during the deployment.

The results of the small-scale deployment of the software
design showed that, on average, it takes new users 140.38
seconds to complete a report and returning users only an
average of 78.15 seconds. Along with providing a short
reporting time, it is determined that 82% of reports provide
an accurate location, 97% of reports effectively convey the
type of damage and its severity, and 100% of reports are able
to document the time of the report such that a timeline of
the damage could be created. Overall, 93% of reports can be
easily used for proactive management.

Along with these things, user feedback shows that 89% of
users who leave feedback favor the use of a questionnaire
rather than a required written description to accelerate the
reporting time. Also, 5% of users inform of confusion or issues
with the design of the reporting software.

The remainder of this paper is organized as follows: Sec-
tion II discusses the reasoning for the initial software design.
Section III discusses the system design and the structure of a
damage report. Section IV discusses a small-scale deployment
of the crowdsourcing software and analyzes the successes
and failures of the software design. Section V concludes the
research and discusses future work and plans for the software.

II. DETERMINING EFFECTIVE DESIGN FOR
CROWDSOURCING SOFTWARE

To provide a method of crowdsourcing data for a small
municipality, it is determined that software can be developed
and makes easily accessible to every individual living within
the municipality. Before development for the software, existing
software to collect such information, such as reporting forms
for potholes on public streets, have been examined for both
effectiveness and shortcomings. Consider the damage to a
public roadway, such as a pothole, at Marshall University in
Huntington WV, USA. When someone observes the damage
and intends to report it, the individual will utilize one of the
available reporting options. One option is to visit the website
for the City of Huntington in order to report the pothole,
but one will only find a web page [13] instructing him/her
to call the Public Works Department. Alternatively, one can
submit a written description of the damage to one of the emails
provided on the web page. This method can quickly fail to
inform the local government about the issue if the individual
reporting leaves insufficient information about the damage or
its location. The other method the individual could consider
would be to use the WVDOT website [14] to report the
damage to the state government. While this method provides a
reporting form that will effectively collect the location of the
damage from the user, it still relies on a thorough and accurate
description from the person writing the report. Along with
this, the form requires much unnecessary personal information,
such as name, email, and mailing address.

Both of these methods share similar issues, and they
contribute directly to reactive management of infrastructure
rather than proactive. It is likely that this occurs for two
reasons. First, many people do not worry about an issue
until it affects them directly. It is unlikely for someone to
be concerned about a developing issue unless it causes an
issue for them. For example, many people will not take the
time and effort required to report a pothole unless the pothole
causes a significant inconvenience, such as causing damage
to one’s vehicle, and the individual’s notification to the local
government will more likely be in the form claim of damage to
personal property rather than an informational report regarding
the pothole itself. Second, many of the existing methods
of reporting public infrastructure damages are inconvenient
and/or confusing. As stated before, the WVDOT reporting
form [14] requires much personal information, and it asks
repetitive questions. For example, users are instructed to enter
the county, route number, road name, nearby landmarks, etc.,
but the user also is instructed to click the exact coordinates
of the damage on a map. For these reasons, an individual on-
the-go may decide not to report observed issues to the local
government even if the issue is obvious and significant.

These issues matter and they continue to promote reactive
management of infrastructure by causing many users only to
report major issues after the fact, so in order for crowdsourcing
software to promote proactive management, these issues will
need to be addressed in the design process. In order to

encourage users to use the software more frequently and for
less significant issues, the design of the software must value
convenience highly. It should be easily accessible to anyone
at any time, and completing a report should take very little
time. The user interface must be inviting and simple to effec-
tively encourage all users, regardless of age or technological
experience, to enjoy creating reports, and this assures that
users are more likely to return to the software again [15].
The software must also assure users that their reports are
being efficiently collected, presented, and considered by the
local government. If these elements are all executed well,
users may be more likely to report less significant issues.
Catching issues at early stages in damage significantly help
municipalities to prevent worsening of the issue into one which
is severe and/or hazardous, and in doing so, potential injuries
and further damages can be prevented [16].

However, this poses another issue. If the reporting process
is made with too much focus on fast reporting times and
convenience, less-detailed reports may be submitted. The more
detailed each report is, the more effective its information can
be used to help a municipality in making budgeting decisions,
and without reports that are easy to interpret, categorize, and
organize, the software will lose its ability to be meaningful
and effective. Therefore, the existing process for such software
where users create written descriptions may prove to be
ineffective.

Therefore, the design of this software must find the balance
between reporting speed and reporting detail. To find this
balance, it is determined that a questionnaire can be provided
to users instead of requesting written reports. This way, a
user can file a report with only a few clicks. Along with
this, automation can be used to accelerate this process. For
example, if the user is to report an issue when she/he sees it,
the location and time can be recorded automatically.

Using the above principles, the software is designed to
accomplish this goal.

III. SYSTEM MODELS

In this section, the system’s design, organization methods
for the database of information, and the structure of a report
are introduced.

Municipality

User

| - I Reports Submitted

Reports Received

[=
S

Issues Addressed/

&
l

Reports Deleted

Server

Fig. 1. System design to collect data through crowdsourcing.

Fig. 1 shows a model of the structure of the software system.
The server utilizes a full LAMP-stack design to provide crowd-

sourcing software to the public, store all answers to public
reports, and handle requests for data from municipalities.

The software available to the public is a website providing
a form with which to create a report. When a report is com-
pleted, the data is sent to the server. The server holds all of the
reports in a database system accessible by a local government,
and that local government may use this information when
developing budgeting plans for public infrastructure, making
repairs in the early stages of damage, and addressing major
damages.

58 oA A -

\ Municipalities

Database

Issue/Damage Reports

Fig. 2. Organization of the Database System.

Fig. 2 shows the organization of reports in the database sys-
tem. Each local government to access the system may navigate
through a database of every piece of infrastructure that has ever
received a report within the governing body. Upon accessing
a piece of infrastructure, a timeline of every report—and each
time a report is addressed/repairs are made—may be accessed.
This structure aims to encourage proactive management of
infrastructure by making patterns of issues completely obvious
to observers.

oAl

Fig. 3.

Update to organization of database storage and access.

This database design is adopted for this system after an-
alyzing results from the software’s deployment (discussed
in Section IV). The previous design of this software —as
shown in the left of Fig. 3—shared similarities with existing
applications such that it would provide local governments
with maps and lists of every report. This design failed to
encourage proactive management because the progression of
damage documented from many reports may not be obvious
to observers. Therefore, instead of showing maps of every

report, in the current design, the maps now show each piece of
infrastructure, and upon selecting one, a chronological timeline
of reports will be accessible in list format. This way, the
observer will see the lifespan of a piece of infrastructure
leading up to the most recent damage.

Server

'\
_oe]
e

Comparisons to

related repW

Answer 4 or Less
Questions

Provide Additional
Details (optional)

Submit a Record Current

Photograph Location

1 & N a

Fig. 4. Structure of an Infrastructure Damage Report

Fig. 4 shows the structure of a damage report. When a user
begins creating a new report, the user is instructed to complete
it at the location of the issue being reported and then prompted
to take a photograph of the issue. Through additional options,
the user can see whether a picture is necessary for the issue
being reported. Usually, a photo is required unless obtaining
the photo could put someone at risk, such as obtaining a
picture of a pothole on a busy street.

After obtaining the photo, the device’s current location is
used for reporting —with the user’s consent —is recorded au-
tomatically. The user is then presented with the first multiple-
choice question. These questions are dynamic depending on
user answers, and there can be a maximum of four questions.
These questions are optimized such that the entire report
should take about a minute to complete, and the reporting
application communicates with the server to determine which
questions best narrow down the issue quickly. The flow of the
questions is organized using a decision tree [17].

The first question asks about the type of infrastructure that
is being reported; for example, users will answer roadway,
sidewalk, bridge, building, etc. Upon answering this question,
the server compares the answer and the location to other
reports, and if it finds matches, it presents the user with a photo
from a recent report and asks the user if he/she is reporting
about this piece of infrastructure. If so, the report is associated
with an existing piece of infrastructure in the database and will
be added to the timeline. If not, then this piece of infrastructure
will be added to the database, and this report will begin the
timeline of reports about the piece of infrastructure.

The remaining questions serve to narrow down the specific
issue and its severity quickly. For example, if the user selects
a sidewalk, the second question will give options related to
sidewalks to choose from, such as cracking, water accumula-
tion, etc. Then, the user may be prompted to rate the severity
of the issue or its posed safety risk to the public on a scale of

one to five.

At this point, the user may submit the report, and the report
should contain sufficient details such that it can be easily
interpreted and used. However, in some specific cases, more
information may be necessary. For example, if the user reports
about damage inside a public building, additional written
details may be necessary for the location of the problem to be
located inside. The GPS information will likely be insufficient,
so users will be asked to leave brief information about the
room.

IV. DEPLOYMENT AND ANALYSIS OF RESULTS

In January 2021, the crowdsourcing software was made
available to students at Marshall University. The university
would simulate a small municipality, and the researchers
would serve as the local government of the municipality.
Students were able to access the website throughout the Spring
2021 semester, and they were able to report about any in-
frastructure on Marshall University campus. This deployment
aimed to analyze the effectiveness of the software design, to
determine if the software effectively collects and organizes
data in a meaningful and useful way, and to determine if
reports are both completed quickly but detailed enough to be
used efficiently and proactively

Throughout the semester, the speed at which students com-
pleted reports were analyzed. To accomplish this, a timestamp
was recorded along with each user’s answer submitted. This
allows us for a complete analysis on which sections of a report
caused users the most issues, and it also informs which parts
of the report went well for users. Along with these things, it
assists us to whether the overall reporting process is efficient or
if it needs further improvements in performance or structure.

Time to Complete a Report

(New Users)
300

250 L]

— ®
[]

.- L]
£ 200
Q []
o L] . L]
@ e ® e ® * 0 . L]
P o - ®
£ ® ‘t . a"‘ L]
= L [] & [
o] L] ., L™

100 @0 oo ., . [.

. .

50

Fig. 5. Scatter plot to represent the amount of time it takes for new users
to complete a report.

Fig. 5 shows the total amount of time it takes a user to
complete his/her first report. If a user does not complete
a report at all or is idle for more than 90 seconds while
completing a report, the result is not included since these
results do not accurately reflect the actual amount of time

it takes to complete a report. On average, it takes new users
140.38 seconds to complete a report. The design of this report
aims to make reports take about 90 seconds since a faster
reporting time will likely attract users to return to the software
again.

This concern related returning to software to report other
issues are observed to be valid because only 23% of previous
users returned to the software to complete a second report. To
find the root cause of this issue, the timestamps of users who
had already completed a report before were analyzed, and the
percentage of users who returned was measured.

Time to Complete a Report

(Returning Users)
300

250
200

150

Time (seconds)

100 * ®

Fig. 6. Scatter plot to represent the amount of time it takes for returning
users to complete a report.

Fig. 6 shows the total time that it takes for returning users
to complete a report. As expected, returning users are able to
complete reports more quickly. The average time to complete
a report for these users is 78.15 seconds which is under the
aim of 90 seconds. This is a shorter amount of time than
anticipated and shows that the report design has the potential
to be completed quickly.

Because of this, it is determined that the primary reason
that new users take much longer to complete reports is
explicitly due to the interface design and provided instructions.
The questions and answer choices provided to users are not
sufficiently self-explanatory, and it takes new users longer to
understand what is asked of them. Along with this, users
may have experienced issues navigating the web form due
to browser incompatibilities, having JavaScript disabled, etc.
These are issues that will need to be addressed in the future
to ensure users take enough interest in this project to return
to the software.

As discussed previously, this study aims to find a balance
between having a short reporting time and ensuring that reports
are detailed enough to be used effectively, and it proves to be
successful. Along with providing users with a short reporting
time, most reports include a sufficient amount of details for
municipalities to use.

Fig. 7 shows the percentages of valuable data from the
submitted reports. Here, valuable data refers to data that com-

Percentage of Useful Data

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

Location Damage/Issue Time/Date

Fig. 7. The percentage of which data collected are useful and informative
for local governments to interpret.

pletely and obviously portrays an answer. Regarding finding
the damage location, 82% of the reports obtained clearly
expressed the location within 30 feet. The remaining 18%
consisted of users who either reported from the inside of
a building or those who misunderstood the instructions and
reported about an issue they were not near. Several of those
reporting from inside a building clearly described the problem
when prompted but failed to provide any necessary details
regarding the location. For example, a report was received
requesting more visibility of yellow paint on a stairway.
However, the specific stairway was never mentioned, and the
user’s GPS gave a location outside of the building which was
not near any staircase. Reports regarding damage to roadways
were not considered in this percentage because getting within
30 feet of the damage could be dangerous to users, so users
were specifically instructed to stay safe and avoid walking on
roadways. Because of this, some users did not submit a photo
or an accurate location.

Regarding the damage itself, 97% of reports effectively
communicated the issue in an unambiguous way. Answers
to the questionnaire definitively defined the exact issue, and
severity ratings from users and the submitted photo showed
the exact severity of the damage. The remaining 3% consisted
of reports where the issue fell outside of the available options
for questions. For example, if a user reported damage to a
public bench, they would choose either ’Sidewalk’ or *Other’
when asked what piece of infrastructure was being reported.
Although descriptions and photos easily and quickly narrow
down the issue, they may be ambiguous depending on the
description provided by the user.

Regarding the time and date, 100% of the reports gave
appropriate details such that the reports could be organized
chronologically. Because this process was automated, it was
expected that a high amount of reports would accomplish
this. However, user misunderstanding and long idle times
—from users leaving the web page open and finishing a

report later date or time —could have addicted this percentage.
Safeguards, such as time-out features, will be implemented
in the future. From this data and further inspection of the
submitted reports, it is determined that a total of 93% of the
reports are overall useful and complete.

Along with analyzing reports for their speed and detail,
user feedback about the software is addressed. Regarding the
design, users provided much feedback about slight changes
to enhance convenience and design, and this feedback will be
addressed. Along with this, there was much feedback about the
system design itself. Because the system utilized a website,
users with poor internet connections faced inconveniences.
Also, several browser compatibility issues were reported. For
example, those using the Microsoft Edge browser were unable
to save reports to the database. When the user’s coordinates
are recorded, an API call is made in order to reverse-geocode
the location. Then, this information is used to appropriately
place the report in the database for the correct municipality.
The browser can be incompatible with the API call made, thus
throwing confusing errors to users about MySQL insertion.

The design received positive feedback as well. Of the
users who commented about the design of a report, 89% of
users liked the design of a questionnaire system to accelerate
the reporting process when compared to written reports as
used by existing sites [14]. Other users commented about
the appearance of the site and accessibility specifics. Most
accessibility features, such as text-to-speech, are handled by
the device and browser used for reporting, but issues like small
text size should be updated.

V. CONCLUSION AND FUTURE WORK

In order for a municipality to create a beneficial bud-
geting plan for infrastructure maintenance and projects, it
must first know the condition of its infrastructure. However,
small municipalities may lack the funds and/or resources to
gather such information, so to provide such municipalities
with this information, the data is gathered from those living
in the municipality through software utilizing crowdsourcing.
Along with gathering data, the software intends to encour-
age proactive management of infrastructure by encouraging
users to report about all issues—regardless of severity at
that time—and presents the information in a meaningful way.
This way, municipalities may recognize patterns and conclude
timelines of damage progression. This software was developed
and deployed in a case study, and it is designed to be both
fast and thorough through the use of a decision tree rather than
through written descriptions.

Our proposed software and crowdsourcing technique are
proved to be successful but need several improvements to
be considered in future work. It is apparent from reporting
times and feedback that instructions need to be made clearer,
and browser incompatibilities and network issues will need
to be addressed. This issue will be solved through the re-
development of the reporting software into a native mobile
application. This way, different browsers cannot change a
user’s experience through varying CSS or script interpretation

[18], and the reporting software will not have to be fetched
from the server. Communications with the server can occur
through asynchronous API calls, allowing for a seamless
user experience even at slower network speeds. Besides these
things, further studies about public acceptance and popularity
of the application will be conducted.

ACKNOWLEDGEMENT

This work was funded in part by the NASA West Virginia
Space Grant Consortium and in part by the Marshall Univer-
sity Research Corporation under the Undergraduate Creative
Discovery and Research Scholar Award Program.

REFERENCES

[1] W. Buhr, “What is infrastructure?” Volkswirtschaftliche Diskussions-
beitrdge, Tech. Rep., 2003.

[2] E. Ivanova and J. Masarova, “Importance of road infrastructure in the
economic development and competitiveness,” Economics and manage-
ment, vol. 18, no. 2, pp. 263-274, 2013.

[3] H. M. Treasury et al., “National infrastructure plan 2011,” Infrastructure
UK, UK Treasury Department (HM Treasury), http://cdn. hm-treasury.
gov. uk/national_infrastructure_plan291111. pdf, 2011, accessed: 2021-
04-25.

[4] W.-C. Huang, J.-Y. Teng, and M.-C. Lin, “The budget allocation model
of public infrastructure projects,” Journal of Marine Science and Tech-
nology, vol. 18, no. 5, pp. 697-708, 2010.

[5] A. Maji and M. K. Jha, “Modeling highway infrastructure maintenance
schedules with budget constraints,” Transportation research record, vol.
1991, no. 1, pp. 19-26, 2007.

[6] U. Wiberg and I. Limani, “Intermunicipal collaboration: a smart al-
ternative for small municipalities?” Scandinavian Journal of Public
Administration, vol. 19, no. 1, pp. 63-82, 2015.

[71 D. C. Brabham, Crowdsourcing. Mit Press, 2013.

[8] M. Baum, Neil, “Crowd sourcing,” The Journal of Medical
Practice Management: ~MPM, vol. 31, no. 4, pp. 238
239, Jan 2016, copyright Greenbranch Publishing, LLC
Jan/Feb 2016; Last updated - 2016-07-13. [Online]. Available:

https://www-proquest-com.marshall.idm.oclc.org/scholarly-journals/
crowd-sourcing/docview/1803510742/se-2?accountid=12281
[9] “U.S. Division of Transportation,” https://www.transportation.gov/, ac-
cessed: 2021-05-18.
“Commonwealth Connect,” http://commonwealthconnect.io/#thome, ac-
cessed: 2021-06-05.
S. Burgart, “Gap trap: A pothole detection and reporting system utilizing
mobile devices,” 2014.
M. Foth, R. Schroeter, and I. Anastasiu, “Fixing the city one
photo at a time: Mobile logging of maintenance requests,” in
Proceedings of the 23rd Australian Computer-Human Interaction
Conference, ser. OzCHI ’11. New York, NY, USA: Association
for Computing Machinery, 2011, p. 126-129. [Online]. Available:
https://doi.org/10.1145/2071536.2071555
“Potholes,” https://www.cityothuntington.com/i- want-to/report/
potholes/, accessed: 2021-05-28.
“WVDOT Request for Road Repair Form,” https://dotforms.wv.gov/cra/,
accessed: 2021-05-19.
[15] J. Johnson and J. Jeff, GUI bloopers: don’ts and do’s for software
developers and Web designers. Morgan Kaufmann, 2000.
Y. Fu, T. Hoang, K. Mechitov, J. R. Kim, D. Zhang, and B. F. Spencer,
“Sudden event monitoring of civil infrastructure using demand-based
wireless smart sensors,” Sensors, vol. 18, no. 12, p. 4480, 2018.
[17] “Decision Tree V2,” https://cimapp.org/downloads/DecisionTreeV2.pdf.
[18] J. G. Ochin, “Cross browser incompatibility: reasons and solutions,”
International Journal of Software Engineering & Applications (IJSEA),
vol. 2, no. 3, pp. 66-77, 2011.

(10]
(11]
[12]

[13]

[14]

[16]

