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Abstract—Nowadays ransomware attack is one of the most
widely used tactics for cyber attacks. It is computationally infeasi-
ble to revert the damage done by a ransomware attack. Therefore,
it is of utmost importance to identify a program to be ransomware
during installation time. In this paper, machine learning binary
classification algorithms have been used to identify ransomware
through dynamic analysis of several features of ransomware. At
first, manual selection of features is analyzed, and later on, we
have used the automatic feature selection process using the K best
algorithm. Results show that in both cases (manual and automatic
selection), we achieved a significant percentage of accuracy to
detect ransomware at runtime.

Keywords: Ransomware, Machine Learning, Dataset, Clas-
sification, Feature Selection, K Best

I. INTRODUCTION

Ransomware is a type of malicious software designed to
block access to a computer system until a sum of money is
paid. It is nowadays a very common form of cyber attack.
Ransomware attacks are very difficult to overturn because
they usually implement state-of-the-art encryption. Hence, it
is prudent to identify whether a program is a ransomware or
not at installation time. This is why binary classification is
necessary to detect a program to be ransomware or not. Binary
classification is the task of classifying the elements of a given
set into two groups (predicting which group each one belongs
to) on the basis of a classification rule. In this paper, we tried
to detect whether a program is ransomware or not using some
machine learning classifications.

Our motivation comes from the fact that cyber attack has
become rampant these days with the widespread use of the
internet throughout the world. There are various means of
attacking, and ransomware is one of the most prominent
modes of attack nowadays[1]. It is to demand ransom by
taking control of the resources being attacked. It is extremely
expensive to revert the ransomware attack process to get the
resources back[2]. If we try to classify the different types
of ransomware attacks, we would find that there are two
types of such attacks. One is called the locker ransomware
which blocks the attacked entity from accessing the resources.
Hence it is called locker-ransomware. Another is to encrypt
the resources. Hence, the user is unable the access the files
or resources. This is called crypto-ransomware. In both cases,
the objective of the attacker is to demand money from the
attacked entity.

There have been many attempts to prevent a ransomware
attack. Several of them used machine learning techniques [3],
[4], [5] in order to classify ransomware. Deep learning has

also been used in this regard [6]. However, their results show
a relatively lower success rate. They have not used to all the
features that a program usually interacts with while being
installed [7]. We have taken into account all those features.
We used six machine learning classification algorithms with
both manual and automatic feature selection. We have seen
our techniques improve the successful ransomware detection
rate.

Our objective is to dynamically analyze methods to de-
tect ransomware. This is where machine learning techniques
comes in handy to classify a program to be goodware or
ransomware[8],[9],[7]. We aim to do so at the time when a
program is being installed on a computer. This is because once
a malicious program has been installed it is difficult to undone
the damage if it is indeed ransomware.

Our contributions to address to detect ransomware is as
follows:

« We have applied 6 machine learning classifications
algorithms which are Stochastic Gradient Descent
Classifier[10], Random Forest Classifier[11], K Neigh-
bors Classifier[12], Gaussian Process Classifier[13],
Multi-Layer Perceptron Classifier[14], and Ada Boost
Classifier[15]

« We have applied them on the dataset as explained in [7].
In the dataset, we applied these algorithms on several
features which were of mainly 7 categories.

The novelty of our approach lies in several folds. We have
used chi-2 test while selecting relevant features. We have
analyzed both manually and automatically selected features
while applying the above-mentioned six algorithms.

Our experimental results is mainly organized in two folds.
One is for manual feature Selection. Another is for automatic
feature selections based on K best algorithm. In both cases,
we achieved a significant percentage of accuracy to detect
ransomware at runtime. The details are mentioned in the result
section.

The rest of the paper is organized as follows. In Section II,
we give our proposed scheme. In Section III, we discuss the
results that we have obtained. Finally, Section IV has the
concluding remarks of this paper.

II. PROPOSED SCHEME

Our proposed scheme is detailed in this section. From the
observation that ransomware runtime behavior has a different
pattern than benign applications. To detect the pattern, a
machine learning scheme has been proposed.
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Figure 1: Proposed scheme.

As shown in Fig. 1, the proposed scheme is divided into
two parts, manual feature selection, and automatic feature se-
lection. In manual feature selection, the features in the dataset
have been selected by applying domain-specific knowledge,
and then the features have been fed into six binary classifiers
to observe the output. In automatic feature selection, K Best
(Chi 2) feature selection algorithm has been applied to extract
100 - 300 features automatically from the dataset, and then
those extracted features were fed into six binary classifiers to
observe the output.

For each classifier, baseline parameters have been selected
to test parameter sensitivity afterward.

Baseline Parameters
loss = hinge

criterion = gini
weights = uniform
algorithm = auto
max_iter_predict = 100
batch_size = 200 to N

Binary Classifier
Stochastic Gradient Descent
Random Forest

KN

Gaussian Process

Multi- tol = le™*

Layer shuffle = True

Perceptron learning_rate_init = 0.001
power_t = 0.5

AdaBoost base_estimator = None

algorithm = SAMME.R

Table I: Baseline Parameters for Binary Classifiers.

Table I lists all the baseline parameters for all six binary
classifiers used. For the Stochastic Gradient Descent classifier,
the loss parameter represents a function. It is set to hinge
which gives us a linear Support Vector Machine [16]. For the
Random Forest classifier, the criterion parameter represents
how we want to measure the purity of the decision trees
inside our random forest. We used gini as our criterion [16].
For the K Neighbors classifier, the weights parameter is set
to uniform which weights each neighbor equally, and the
algorithm is set to auto which will choose the appropriate
algorithm to select neighbors based on our given data [16]. For
the Gaussian Process classifier, the max_iter_predict parameter
is used to specify what is the maximum number of iterations
for calculating posterior [16].

In Multi-layer perceptron, the batch size parameter is used
to specify how many minibatches to use for the solver. The
initial learning rate is set to 0.001. The power_t parameter is
used when the solver is SGD for inverse scaling the learning
rate. By setting the shuffle parameter to true, we are indicating
that samples should be shuffled in each iteration if the solver

is set to adam or SGD. The tol parameter sets the optimization
tolerance [16]. In Ada Boost classifier, base_estimator is set to
None which selects decision tree classifier, and the algorithm
is set to the SAMME.R boosting algorithm [16].

A. Dataset

The dataset[3] used has 1524 rows and 30970 columns.
Each row represents an application (either ransomware or
goodware). Starting from the fourth column, each column
represents individual operations performed by an application
on the operating system and each of these columns contains
binary values. As for the first three columns, the first column
has a unique ID for each application row, the second column
is the binary label column (1 to indicate ransomware and
0 to indicate goodware) and the third column represents a
multi-class classification label (1-11 for ransomware and O
for goodware). For binary classification purposes, the first and
third columns have been removed before using the dataset for
training.

Features in the dataset are divided into 7 distinct categories
according to different operations an application performs on
the operating system. The categories are listed below:

o API invocations

« Extension of the dropped files

o Registry key operations

« File operations

« Extensions of the file involved in file operations

« File directory operation

o Embedded strings

B. Classification on Manual Feature Selection

Six classification algorithms were fitted on the above-
mentioned feature categories separately. The classification was
also performed on the whole dataset.

The algorithms used for classification are listed below:

o Stochastic Gradient Descent Classifier[10]

o« Random Forest Classifier[11]

« K Neighbors Classifier[12]

o Gaussian Process Classifier[13]

o Multi-Layer Perceptron Classifier[14]

« Ada Boost Classifier[15]

The widely accepted Python library scikit-learn[16] has
been used for running all the classifiers.

C. Classification on Automatic Feature Selection

The focus of this stage was to reduce the dataset features
for below-mentioned reasons:

o In the dataset, no of samples « no of features. It has
1524 samples and 30970 features. This will cause over-
fitting in data as it will be affected by the curse of
dimensionality[17].

¢ When using the model in real-time to detect ransomware,
extracting all 30970 features will not be feasible on a
client machine in terms of both time and resources.

o Not all the features are necessary for classification pur-
poses.



o Training time can be reduced significantly if features are
removed which in turn enables the possibility to perform
online learning in the future.

K Best algorithm from the scikit-learn library is used to
reduce the number of features from 30970 to 100 — 300.

The K Best algorithm ranks all the features based on the
chi-squared function [18]. This function works by computing
the chi-square stats between each non-negative feature and
class. By applying this algorithm, independent features can
be removed which are not related to the classification task at
hand. 100 — 300 highest valued features were extracted by
using mentioned feature selection algorithm to feed the six
binary classifiers.

D. Performance Metric

We have chosen accuracy as our performance metric. In
this experiment, we want to detect whether the software is
ransomware or not. From the experiments, we expect to find
out what is the probability that our trained model will be able
to find out if a given software is ransomware or not. Accuracy
is a reliable performance metric in this scenario as it provides
us with the measure of success in our test data which gives us
some indication of what we can expect our model to perform
in the real world.

ITI. RESULTS
In this section, obtained results by applying the proposed
scheme of the experiment are discussed.
A. Manual Feature Selection Result

In the first stage, six algorithms were executed on the
manually selected 7 categories and also on the whole dataset.

100 v/ o 56
= RF
80 | mm Kn
mm GPC
mm MLP
>
g 60 mm
=)
(O]
£ 40 -
20
0_

API DROP

REG  FILES  EXT DIR STR ALL

Data Slices

Figure 2: Results of manual feature selection.

Fig. 2 shows that the x-axis corresponds to the 7 data slices
(categories) manually selected from the dataset including the
whole dataset at very last. In the y-axis, the accuracy for
different classifiers is shown. Colored lines indicate the six
classifiers used for the experiment.

For example, it can be observed from the graph that, for API
and the whole dataset, all six algorithms provide an accuracy

of around 95%. For all the other categories, the average seems
to be 80% accuracy.

The result over the whole dataset is indicative of overfitting
by the curse of dimensionality which follows to the next stage
of experimentation where the number of features is reduced
to achieve a more accurate and uniform result.

B. Automatic Feature Selection Result

In the second stage, the K Best algorithm is applied to select
100 — 300 features.
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Figure 3: Results of automatic feature selection.

In Fig. 3, the x-axis corresponds to different numbers
of selected features. The y-axis indicates accuracy, and the
colored lines represent the six classification algorithms used
for the experiment.

For example- the blue line represents the Stochastic Gradi-
ent Descent Classifier. It fluctuates from around 45% to 97%
in the 100-300 feature range. Like, in around 150 features
it drops down to 45% and in 298 features it achieves the
accuracy of 98%. Also, the fluctuation is regular with respect
to feature numbers. With feature number increase, it gains
more accuracy.

The orange line represents the Random Forest Classifier.
This classifier has a regular fluctuation compared to SGD
classifier as its accuracy is proportional to feature increase. In
the 100-300 feature range, its accuracy stays within 88-97%.

K Neighbours Classifier is indicated by the green line. From
feature range 100-135, it stays around 85% accuracy. It rises in
accuracy shortly around feature range 135-145 and then drops
to around 88%. It stays around 88% till 275 features, then
from 275-300 feature range, it achieves consistent accuracy of
97%.

The Gaussian Process Classifier starts at 84% accuracy
and with feature increase, its accuracy level starts to increase
as well. From 175 features to 300 features, it maintains its
accuracy level of around 97%. This classifier achieves its
highest accuracy at 217 features which is 98.03%.

The purple line represents Multi-layer Perceptron Classifier.
This classifier starts at around 87% accuracy and jumps to 95%
accuracy level at around 135 feature range. It maintains this
accuracy level throughout the rest of the feature range till 300.
It achieves the highest accuracy of 98% at feature 234.



The chocolate-colored line represents Ada Boost Classifier.
This classifier starts at 85% accuracy and picks up its accuracy
at around 160 features. It maintains accuracy of over 93%
from 160 to 300 feature range. The highest accuracy of this
classifier occurs at 213 features which is 97.38%.

C. AUC Opver Features and Parameter Sensitivity

In this section, the AUC (Area Under Curve) value of ROC
(Receiver Operating Characteristics) is tested on an automati-
cally extracted feature range for all six binary classifiers with
regards to baseline parameter sensitivity.
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1) SGD Classifier: Fig. 4 shows the impact of increasing
the max_iter parameter of the Stochastic Gradient Descent
classifier on the AUC value over feature range 100-300. This
parameter indicates the maximum number of passes over the
training data which is sometimes referred to as epochs. We
observed that for a lower number of maximum iteration like
max_iter = 5 (blue line in the graph), accuracy starts over 94%
and increases as features keep increasing. There is a noticeable
increase in the accuracy from 94% to 97% around 125 features
which drops slightly and then increases again at around 150
features.
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Figure 5: RF AUC Over Features w.r.t. n_estimators.

2) Random Forest Classifier: Fig. 5 shows the impact of
varying the n_estimators parameter of the Random Forest

classifier. This parameter indicates how many decision trees
are present in the random forest. We found that for 10
decision trees, the accuracy starts slightly below 96.5% and
then increases with respect to features. We observed a large
increase in accuracy around 150 features which increases the
accuracy close to 99.5%.
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Figure 6: KN AUC Over Features w.r.t. n_neighbors.

3) KNN Classifier: Fig. 6 shows the impact of the
n_neighbors parameter of the K Nearest Neighbor classifier.
The n_neighbors parameter indicates the number of neighbors
chosen for majority voting. This is the value of K in the K
Nearest Neighbor classifier. The choice of K is very important
as it will have a major impact on accuracy. We observed that
for K =5, accuracy starts above 95% and remains there till 150
features. Around 150 features, accuracy jumps to slightly over
98% and stabilizes. We observed that increasing the number
of neighbors in this experiment slightly decreases accuracy
overall. The impact is fairly evident at the start where we
observed that K = 5 has 95.5% accuracy whereas K = 25
has 93% accuracy. This behavior may be caused by the fact
that increasing K can blur the decision boundary which may
impact performance negatively.
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Fig. 7 shows the impact of leaf_size parameter in the K
Nearest Neighbor classifier. This parameter indicates the leaf



size for the constructed tree of the model. This is an important
parameter as it has an impact on the speed and query of the
model. It also has an impact on how much memory is required
to store the tree. For all the values of leaf size, we observed
that the accuracy starts at 95.5% and increases above 97% until
130 features. Then the accuracy drops slightly above 96% and
then jumps to 98% at around 150 features.
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Figure 8: GPC AUC Over Features w.r.t optimizer.

4) Gaussian Process Classifier: Fig. 8 shows the impact
of choosing five different optimizers on accuracy in the Gaus-
sian Process Classifier. This parameter represents different
functions that optimize the internal parameters of the GPC
model. We have observed that all the functions produce the
same accuracy. All of them start above 94% accuracy and the
accuracy declines until around 140 features. After 140 features
the accuracy jumps above 98% and steadily increases with
respect to features and finally stabilizes at 99.5%.
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Figure 9: MLP AUC Over Features w.r.t. learning_rate.

5) MLP Classifier: Fig. 9 shows the impact of learning
rate on accuracy across features. This parameter schedules the
initial learning rate. There are three types of schedule provided
by the scikit-learn library [16]. Constant uses the initial given
learning rate at each time step. Invscaling gradually decreases
the learning rate and adaptive changes the learning rate based
on training loss. We observed that each of these learning rate

schedulers has the same impact on accuracy. For each one
of them, accuracy remains from 95.5% to 96.5% until 140
features. After that accuracy jumps around 98.5% and then
slowly increases with features until getting stabilized at 99.5%
accuracy.
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Fig. 10 shows the impact of hidden layer sizes on accuracy
across features. A neural network typically consists of one
hidden layer and the size of the hidden layer has an important
impact on accuracy. There are many conventional rules of
thumb on deciding the size of the hidden layer. One such
rule is that the hidden layer size should be the mean of input
and output layer and another such rule states that hidden layer
size should be two-thirds of the input layer. Our input layer
consists of around 900 samples and we have 2 neurons in
the output layer. So according to the first rule, our hidden
layer size should be 450 and according to the second rule, our
hidden layer size should be 600. In this experiment, we wanted
to find out if we can achieve high accuracy by using a lesser
number of neurons in the hidden layer than the suggested
conventional number and thus saving space. We have used
five different hidden layer sizes, like - 50, 75, 100, 150, 200.
For each one of them, accuracy remains from 97% to 96%
until 140 features. After that accuracy jumps around 98.5%
and then slowly increases with features until getting stabilized
at 99.5% accuracy.

6) Ada Boost Classifier: Fig. 11 shows the effect of the
learning rate parameter in the Ada Boost classifier. Learning
rate assigns the weight to each classifier. We observed that
the impact of this parameter consists of sharp increases in
accuracy score and then plateaus for some time. In its steady
growth, it maintains this trend of sharp jumps and short
plateaus. It has a very promising AUC score of over 100-300
features as it always stays from AUC value 0.94 - 0.99 and
in the end crosses 0.99 around 200 features. With respect to
different learning rates at around 300 features a learning rate
of 0.75 triumphs other learning rates.

Fig. 12 shows the impact of n_estimators parameter on
accuracy. This parameter determines how many weak learners
or stumps (decision tree with only one node and two leafs) are
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Figure 11: AB AUC Over Features w.r.t. learning_rate.
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Figure 12: AB AUC Over Features w.r.t. n_estimator.

there in the model. The AB classifier shows steady growth with
sharp jumps and plateau trend just like Fig. 11. With regards
to the number of estimators, it does not show much change in
accuracy.

IV. CONCLUSION AND FUTURE WORKS

In this paper, we have shown that it is possible to detect
ransomware using machine learning algorithms with a fair
amount of accuracy. As the feature number is limited to below
300 features, it would take a very short amount of time to
detect ransomware using this technique in client machines. We
have used various classifiers and feature selection algorithms
to detect ransomware applications and evaluate their effec-
tiveness by using an established dataset. The accuracy level
was improved by 1% by using a different feature selection
algorithm (chi-square test) instead of the Mutual Information
criterion.

In the future, we plan to use deep learning classification
such as CNN to improve this result further. Also, new fea-
tures could be considered such as network communication
performed by an application during their runtime to predict
ransomware more accurately.
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