
Preventing Session Hijacking using Encrypted
One-Time-Cookies

Renascence Tarafder Prapty 1, Shuhana Azmin 1 Md. Shohrab Hossain 1, Husnu S. Narman2

1Department of Computer Science and Engineering, Bangladesh University of Engineering and Technology, Bangladesh
2Weisberg Division of Computer Science, Marshall University, Huntington, WV, USA

Email: prapty101@gmail.com,shuhana.azmin@gmail.com, mshohrabhossain@cse.buet.ac.bd, narman@marshall.edu

Abstract—Hypertext Transfer Protocol (HTTP) cookies are
pieces of information shared between HTTP server and client to
remember stateful information for the stateless HTTP protocol
or to record a user’s browsing activity. Cookies are often used
in web applications to identify a user and corresponding authen-
ticated session. Thus, stealing a cookie can lead to hijacking an
authenticated user’s session. To prevent this type of attack, a
cookie protection mechanism is required. In this paper, we have
proposed a secure and efficient cookie protection system. We have
used one time cookies to prevent attacker from performing cookie
injection. To ensure cookie integrity and confidentiality, we have
encrypted sensitive information in the cookie. We have verified
that our proposed system can ensure confidentiality, authenticity
and integrity through security analysis. Our proposed system can
efficiently prevent session hijacking performed through replay
attack and cookie poisoning attack.

keywords—Reverse Proxy Server, One Time Cookie, Public-
Key Cryptography, Symmetric Encryption, Session Hijacking.

I. INTRODUCTION

HTTP is a stateless protocol which does not require re-
membering each user’s status across multiple requests. So
web applications use HTTP session cookies to make stateless
HTTP protocol stateful. An HTTP cookie is a small piece
of information that is sent by the HTTP server and stored
in the web browser. Parameters of a cookie are name, value,
expiration, path, domain, and secure. Value is used to store a
user’s personal information including their user identification
(ID), session ID, and email address. Cookies are used for
session management, customizing web pages, saving shopping
cart, etc.

Cookies create various security risks when used as session
identification tokens. Cookies are stored on a browser and
transferred over the Internet without any security mechanism.
Thus, the user information stored in value can be easily
acquired by an adversary using various cookie theft technolo-
gies. Various web applications use Hypertext Transfer Protocol
Secure (HTTPS) to protect their communication. However, it
is not possible to be ”always-on HTTPS” due to performance
and cost. Moreover, an attacker can still gain access to cookies
by performing an attack against HTTPS and the web browser.
Hence, using HTTPS is not a complete solution.

Several studies have been performed to address cookie-
related security problems. Several schemes [1]–[4] use

978-1-7281-4695-9/20/$31.00 c©2020

cryptography-based techniques to achieve cookie confidential-
ity and integrity. However, each mechanism lacks in one aspect
or another. The scheme described in [1] does not achieve
cookie confidentiality. In [3], the web server is required to
store one-time keys that lead to key management problems.
In [2] and [4], a one-time key is encrypted by the web server’s
public key. As public key encryption is computationally expen-
sive, these schemes are not efficient. [5] proposes the use of
cache cookies as an alternative to cookies for authentication of
users. This scheme does not ensure cookie confidentiality and
integrity. [6] proposes a mechanism using one-time cookies
which ties a unique cookie to every HTTP request. However,
this scheme relies on HTTPS to protect the credentials of a
cookie. In [7], a secure and efficient cookie protection scheme
is proposed based on self-verification. But this scheme uses
static cookies. So it is still vulnerable to replay attack.

Our objective is to propose an efficient HTTP cookie protec-
tion scheme to simultaneously ensure cookie confidentiality,
authenticity and integrity and to prevent session hijacking
performed through replay attack and cookie poisoning attack.

The contributions of this work are: (i) Creating a re-
verse proxy server (RPS) that generates session management
cookies, (ii) Creating a cryptography module based on self-
verification to protect sensitive information in cookies.

Our proposed reverse proxy server uses the concept of a
one-time cookie where each HTTP request is tied to a unique
session token. Our proposed cryptography module ensures
confidentiality, authenticity and integrity of cookies.

Our proposed scheme differs from existing solutions in pro-
tection against cookie replay attack, cookie poisoning attack
and in requirement of no additional state by the Web server.
We use a unique cookie to authenticate each request. This
cookie comprises of encrypted sensitive information, plain text
nonsensitive information and a digital signature created by
using both sensitive and nonsensitive information. Usage of
unique cookie per request makes it difficult to reuse cookies to
get unauthorized access. As we have used the self-verification
method, no additional state is generated in the Web server.
During decryption, the web server retrieves the symmetric
key from the digital signature. Nonsensitive information in the
cookie is used to derive symmetric key used for encryption and
decryption. If nonsensitive information of cookie is modified
in the client side, decryption of sensitive information in RPS

fails. Thus, the proposed encryption has twofold benefits: it
preserves the confidentiality of sensitive information and also
the integrity of non-sensitive information.

The rest of the paper is organized as follows. Related works
on session hijacking and cookie protection are briefly dis-
cussed in Section II. In Section IV, our proposed architecture
is explained along with its implementation details. Section V
describes how confidentiality, authenticity, the integrity of
cookie and prevention against replay attack is ensured in our
proposed model. Timing analysis of cryptography operations
are given in short in Section VI Finally, we conclude the paper
in Section VII.

II. RELATED WORKS

Several works have been done with the goal to prevent
cookie hijacking. Part et al. [2] proposed secure cookies
based on public-key cryptography to provide cookie confi-
dentiality and integrity and authenticity. However, a public-
key cryptosystem is relatively slow compared to symmetric
key cryptosystem. Fu et al. [1] proposed a simple web client
authentication scheme based on unforgeable cookies with
explicit expiration time. However, this scheme is vulnerable
to replay attacks. Liu et al. [8] proposed a secure cookie
protocol based on symmetric cryptosystem. Blundo et al. [3]
proposed a scheme using one-time-keys for browsers. These
keys are stored in memory which leads to key management
problems. Juels et al. [5] proposed the use of cache cookies
to provide user authentication. However, it does not ensure
the confidentiality and integrity of a cookie. Alabrah et al. [9]
proposed a mechanism which utilized hybrid two dimensional
one way hash chains and sparse caching to authenticate session
of social media users. However, effectiveness of this mecha-
nism to prevent session hijacking is not explored. Yang et
al. [4] suggested a scheme that provides better confidentiality,
integrity and authenticity based on the Public Key Infras-
tructure (PKI). Calzavara et al. [10] investigated prevailing
session hijacking techniques, reviewed and assessed existing
prevention mechanisms and listed few guidelines commonly
followed by designers to mitigate session hijacking.

Another system is proposed in [11] which uses OTC to
prevent Session Hijacking. This system includes a Reverse
Proxy Server to issue and validate OTC. Implemented RPS
checks IP address, session ID, OTC and browser fingerprint.
Lee et al. [7] proposed a secure and efficient cookie protection
scheme, having three phases: cryptography key generation,
cookie issue and Login. In [12] the idea of n Sub Sessions
is explained. Cookie Scope Fragmentation is identified as root
cause for Sub Session Hijacking.

Some works use One Time Cookies to prevent session
hijacking and some other works use Encryption in Cookies to
protect sensitive information. But unlike our proposed method,
no system uses these two mechanisms together for prevention
of session hijacking. Our proposed system is unique in this
approach.

III. TERMINOLOGIES

In this section, we present a brief description of cookie and
cookie hijacking attack.

A. HTTP Cookie

An HTTP cookie (web cookie, browser cookie) is a small
piece of data that a server sends to a user’s web browser. The
browser may store it and send it back with the next request
to the same server. Typically, it is used to check whether two
requests have come from the same browser keeping a user
logged-in, for example. It remembers stateful information for
the stateless HTTP protocol. Cookies are mainly used for three
purposes: session management, personalization and tracking.
A server generates cookies and sends them to the browser in
responses as HTTP headers as follows:

Set− Cookie :< cookie− name >=< cookie− value >

the server can set other parameters such as domain and path
(cookies scope), expiration (cookies validity period), HttpOnly
flag (defines if the cookie can be accessed by client-side
scripts) and Secure flag (defines if the cookie can only be
sent over a secure channel; i.e., HTTPS).

B. Cookie Hijacking Attack

Although cookies can be conveniently used by users, they
are transferred without any security mechanism over the
internet. Thus, personal information stored in values can
be easily acquired by an eavesdropper using various cookie
theft technologies. Tools such as Firesheep [13] are used
to intercept unencrypted session cookies. Cross-site scripting
(XSS) attacks can be used to send a malicious script to an
unsuspecting user’s browser. The malicious script can access
any information on a cookie stored by the user’s browser, and
this information can then be used on the associated website.
Cross-Site Tracing (XST) and DNS cache poisoning attacks
can also be used to steal cookies from the browser. Moreover,
cookies can be tampered with on browsers. Any parameters of
a cookie can be altered for malicious purposes. For example,
the expiration parameter could be modified to extend the login
session.

IV. PROPOSED ARCHITECTURE

Our proposed model consists of two modules:
1) Reverse Proxy Server: RPS is responsible for issuing

and checking OTC. We follow the design of the reverse
proxy server proposed in [11].

2) Cryptography Operations Module (COM): It is respon-
sible for assurance of Confidentiality, Authenticity and
Integrity for OTC. Cryptography operations performed
on session cookies in [7] provide a general guideline for
our proposed module.

Fig. 1 shows the sequence of operations performed in the
proposed architecture. When a user sends a login request, RPS
forwards this request to the server. If the server authenticates
a user, RPS generates an OTC and encrypts the sensitive part
comprising of a session ID and expiry time. RPS also creates

Fig. 1. Proposed Architecture

Fig. 2. Interactions of RPS

a digital signature from the contents of the OTC. The response
from the server is sent to the user along with OTC. Client’s
browser verifies digital signature contained in the OTC and if
verification is successful, then it stores OTC and includes it in
the next request to the server. Again, this request comes to RPS
first and RPS verifies OTC. The request is forwarded to the
server only if provided OTC is correct. The response from the
server to the client is also routed through RPS so that RPS
can generate a new OTC, encrypt sensitive part and create
a digital signature. Every subsequent request and response
between client and server follows this same procedure until
the session ends.

A. Reverse Proxy Server(RPS)

All communication between the client’s browser and back-
end server is routed through RPS. An OTC is issued to the
client’s browser per request. RPS works in tandem with COM
to ensure confidentiality, authenticity and integrity of OTC.
Interactions of RPS with other components are shown in
Fig. 2.

The functionalities of the proposed RPS are:

Fig. 3. Code Snippet from RPS

• Collection of IP address and browser fingerprint from the
client side

• Generation of a session ID and OTC
• Matching IP address, browser fingerprint and session ID

along with OTC
TwistedWeb has been used to implement RPS. When a

request comes, an OTC is generated and set in RPS. A code
fragment from the implementation of RPS is shown in Fig. 3.

B. Cryptography Operation Module(COM)

As the name suggests, COM performs all cryptography
operations required in the proposed architecture to ensure
confidentiality, authenticity and integrity of the OTC. Main
functionalities of this module are as follows:
• Generating long term asymmetric key pair
• Breaking OTC into nonsensitive component (Ci1) and

sensitive component (Ci2)
• Selection of different secret parameter (k) for each OTC
• Generation of Symmetric Key (SK) from Ci1 and k
• Encryption of Ci2 using SK
• Generation of digital signature for this partially encrypted

OTC
• Verification of digital signature by browser
• Retrieving k from the digital signature during verification

of OTC
• Reconstruction of Symmetric Key (SK) from k and Ci1

during verification of OTC
• Detection of any modification in the OTC sent from the

client
COM has been implemented with the help of Python

Cryptography library.
RSA algorithm has been implemented to generate Asym-

metric Key Pair. The implementation process is described
below:
• Randomly selecting a large Prime Number p
• Calculating a Primitive Number g ∈ GF (p)
• Randomly selecting Private Key x ∈ [1, p− 1]
• Calculating Public Key y = gx mod p

Fig. 4. Symmetric Key Generation

During generation of each OTC, a secret parameter k is
calculated such that k ∈ [1, p− 1] and gcd(k, p− 1) == 1.

Non-sensitive content of OTC and k are concatenated and
hashed using the SHA256 algorithm to generate a symmetric
key. This process can be expressed as follows:

SK = h(Ci1||k) (1)

The code fragment in Fig. 4 shows generation of a sym-
metric Key.

Symmetric key is used in Python Cryptography Module
to encrypt sensitive content. It can be described as Ti =
ESK(Ci2). Here ESK() is the Encryption function.

Digital signature (r,s) of OTC is created using the following
equations:

r = gk mod p (2)

s = x ∗ (r + h(Ci1||Ti)− k mod (p− 1) (3)

where, Ci1, ti, r, s are sent to client as part of the OTC. To
check the authenticity of OTC, the client’s browser can verify
the digital signature using the following equation:

yr+h(Ci1||Ti) = r ∗ gs mod p (4)

Client’s browser includes provided OTC in next request.
During verification of an OTC, k is retrieved from digital

signature using following equation:

k = x ∗ (r + h(Ci1||Ti)− s mod (p− 1) (5)

symmetric key is reconstructed using Eqn. (1).
Digital Signature Creation and Secret Parameter Retrieval

functions are shown in Fig. 5
Symmetric key is used in Python Cryptography Module to

decrypt the encrypted sensitive content. It can be described as
Ci2) = DSK(Ti. Here DSK() is the Decryption function.

Encryption and Decryption functions are shown in Fig. 6
All the above-mentioned equations used in cryptography

operations have been taken from [7].

Fig. 5. Digital Signature Creation and Secret Parameter Retrieval

Fig. 6. Encryption and Decryption

V. SECURITY ANALYSIS

In this section, we explain how our proposed system can en-
sure confidentiality, authenticity and integrity through security
analysis of our proposed system.

A. Ensuring confidentiality

The sensitive part of the OTC which contains session ID and
expiry time is encrypted by secret key SK. SK is not stored
in RPS or transmitted to the Client over the network. Hence,
any eavesdropper cannot sniff it from the transmission link. It
can be regenerated only by the RPS from Ci1, k.

On the other hand, k is not stored anywhere. RPS alone
can retrieve k from the equations of r and s. Attacker must
solve the complex discrete logarithm problem from Eqn. (2)
to retrieve k by using the equation of r. It is also impossible to
retrieve k from the equation of s because two unknown secret
parameters (k and x) are involved, as presented in Eqn. (3).
As a result, no attacker can have access to SK and sensitive
component of a cookie is accessible to only RPS. Hence, the
confidentiality of the sensitive part of the cookie is ensured.

B. Ensuring authenticity

RPS signs OTC with its private key using Eqn.(2) and
Eqn.(3). Client’s browser can use the public key of RPS to
check the authenticity of OTC by using Equation 4. If an

Fig. 7. OTC Issue Phase

attacker forges a signature without using the private key of
RPS, the signature verification fails. This way the client’s
browser can be sure of the authenticity of the cookie.

C. Ensuring integrity

Encryption of cookie also ensures its integrity. If any of
Ci1, Ci2, ti, r, s of OTC is modified, Equation.5 gives wrong
k. Consequently, regenerated SK is wrong. As a result, de-
cryption operation fails and cookie modification is detected.

D. Prevention against replay attack

For each request, an One Time Cookie(OTC) is generated
by RPS with a unique session ID and very short expiry time.
RPS matches session ID of OTC returned from browser with
expected value. It checks expiry time too. Hence an attacker
cannot perform replay attack by using an expired or already
used OTC with a new request. Our mechanism also ensures
that an attacker cannot modify OTC to extend expiry time. So
replay attack through this way is not possible either.

VI. TIMING ANALYSIS

We have performed timing analysis for both OTC issue
phase and OTC verification phase.

A bar chart showing the timing break down for all opera-
tions in the OTC issue phase is shown in Fig. 7. Cryptography
operations are placed along X-axis and corresponding relapsed
times in microseconds are placed in Y-axis. Secret parameter
selection and secret key generation operations are almost
instant. On the other hand, Encryption and Digital signature
creation operations take a small amount of time. As a result,
cryptography operations in OTC issue phase do not negatively
impact the overall performance.

There are three main operations during OTC Verification
Phase: secret parameter retrieval, secret key generation and
decryption. All these operations occur instantly taking zero
time when measured in microseconds. So, OTC verification
phase does not have any additional overhead because of
cryptography operations.

We have also experimented on performances of all cryptog-
raphy operations during OTC issue phase and OTC verification
phase for different number of concurrent requests.

Fig. 8. Performance of OTC Issue Phase for varying number of requests

Fig. 8 shows behaviours of cryptography operations during
OTC Issue Phase. In this line chart, the number of requests is
placed in X-axis and the time taken by concerned operations is
placed in Y-axis. Each operation is represented by a line of a
different colour. From Fig. 8, we can see that Secret Parameter
Selection and Secret Key Generation are along the X-axis,
meaning a very small amount of time is required for these
two operations. These two operations take almost constant
times irrespective of the number of requests. On the other
hand, lines for Cookie Data Encryption and Digital Signature
Creation have somewhat parabolic shapes. The time required
for Cookie Data encryption and Digital Signature Creation at
first increases along with the number of requests and after
obtaining a certain value they decrease despite an increased
number of requests.

Fig. 9. Performance of OTC Verification Phase for varying number of requests

A line chart showing the time taken by different cryptog-
raphy operations during OTC Verification Phase is given in
Fig. 9. We have a varied number of concurrent requests and
show the time taken by concerned operations. From Fig. 9, we
can see that Secret Parameter Extraction and Secret Key Gen-
eration requires a very small amount of time and these times
are constant irrespective of the number of concurrent requests.
On the other hand, the line for Cookie Data Decryption has
an almost parabolic shape. The time required for Cookie Data

encryption at first increases with the increase of the number
of concurrent requests and after obtaining a certain value it
decreases despite increase of number of requests.

VII. CONCLUSION

In this paper, we have proposed a novel solution to si-
multaneously ensure cookie confidentiality, authenticity and
integrity and to prevent session hijacking through replay and
cookie poisoning attacks. We have implemented a reverse
proxy server to issue and verify one time cookies as session
cookies and a custom cryptography operations module to
manage encrypted one time cookies. We have performed a
security analysis for the verification of our proposed system.
Our scheme can prevent session hijacking through replay
attack and cookie poisoning attacks by using OTC instead of
expensive HTTPS connections.

REFERENCES

[1] K. Fu, E. Sit, K. Smith, and N. Feamster, “The dos and don’ts of
client authentication on the web,” in USENIX Security Symposium,
Washington, DC, USA, August 13-17, 2001, pp. 251–268.

[2] J. S. Park and R. Sandhu, “Secure cookies on the web,” IEEE Internet
computing, vol. 4, no. 4, pp. 36–44, 2000.

[3] C. Blundo, S. Cimato, and R. De Prisco, “A lightweight approach to
authenticated web caching,” in Symposium on Applications and the
Internet. Trento, Italy: IEEE, 4 Feb. 2005.

[4] J.-P. Yang and K. H. Rhee, “A new design for a practical secure cookies
system,” Journal of information science and engineering, vol. 22, no. 3,
pp. 559–571, 2006.

[5] A. Juels, M. Jakobsson, and T. N. Jagatic, “Cache cookies for browser
authentication,” in IEEE Symposium on Security and Privacy. Berkeley,
CA, USA: IEEE, 21-24 May, 2006.

[6] I. Dacosta, S. Chakradeo, M. Ahamad, and P. Traynor, “One-time cook-
ies: Preventing session hijacking attacks with stateless authentication
tokens,” ACM Transactions on Internet Technology, vol. 12, no. 1, p. 1,
2012.

[7] W.-B. Lee, H.-B. Chen, S.-S. Chang, and T.-H. Chen, “Secure and effi-
cient protection for HTTP cookies with self-verification,” International
Journal of Communication Systems, vol. 32, no. 2, 2019.

[8] A. X. Liu, J. M. Kovacs, C.-T. Huang, and M. G. Gouda, “A secure
cookie protocol,” in 14th International Conference on Computer Com-
munications and Networks. San Diego, CA, USA: IEEE, 17-19 Oct.
2005.

[9] A. Alabrah and M. Bassiouni, “Preventing session hijacking in collab-
orative applications with hybrid cache-supported one-way hash chains,”
in 10th IEEE International Conference on Collaborative Computing:
Networking, Applications and Worksharing. Miami, FL, USA: IEEE,
22-25 Oct. 2014.

[10] S. Calzavara, R. Focardi, M. Squarcina, and M. Tempesta, “Surviving
the web: A journey into web session security,” ACM Computing Surveys
(CSUR), vol. 50, no. 1, pp. 1–34, 2017.

[11] A. M. Sathiyaseelan, V. Joseph, and A. Srinivasaraghavan, “A proposed
system for preventing session hijacking with modified one-time cookies,”
in International Conference on Big Data Analytics and Computational
Intelligence. Chirala, India: IEEE, 23-25 March 2017, pp. 451–454.

[12] S. Calzavara, A. Rabitti, and M. Bugliesi, “Sub-session hijacking on the
web: root causes and prevention,” Journal of Computer Security, vol. 27,
no. 4, pp. 1–25, Oct. 2018.

[13] E. Butler, “Firesheep,” 2010. [Online]. Available:
https://codebutler.github.io/firesheep/

