Network Anomaly Detection Using LightGBM:
A Gradient Boosting Classifier

Md. Khairul Islam!, Prithula Hridi', Md. Shohrab Hossain!, Husnu S. Narman?

'Department of Computer Science and Engineering, Bangladesh University of Engineering and Technology, Bangladesh
2Weisberg Division of Computer Science, Marshall University, Huntington, WV, USA

Email: khairulislamtanim @ gmail.com, prithula5117 @ gmail.com, mshohrabhossain @cse.buet.ac.bd, narman@marshall.edu

Abstract—Anomaly detection systems are significant in rec-
ognizing intruders or suspicious activities by detecting unseen
and unknown attacks. In this paper, we have worked on a
benchmark network anomaly detection dataset UNSW-NBI15,
that reflects modern-day network traffic. Previous works on this
dataset either lacked a proper validation approach or followed
only one evaluation setup which made it difficult to compare
their contributions with others using the same dataset but with
different validation steps. In this paper, we have used a machine
learning classifier LightGBM to perform binary classification on
this dataset. We have presented a thorough study of the dataset
with feature engineering, preprocessing, feature selection. We
have evaluated the performance of our model using different
experimental setups (used in several previous works) to clearly
evaluate and compare with others. Using ten-fold cross-validation
on the train, test, and combined (training and test) dataset,
our model has achieved 97.21%, 98.33%, and 96.21% f1_scores,
respectively. Also, the model fitted only on train data, achieved
92.96% f1_score on the separate test data. So our model
also provides significant performance on unseen data. We have
presented complete comparisons with the prior arts using all
performance metrics available on them. And we have also shown
that our model outperformed them in most metrics and thus can
detect network anomalies better.

Index Terms—anomaly detection, machine learning, network
security.

I. INTRODUCTION

Web applications are getting increasingly popular, and the
Internet has become an important part in our daily life. As
a consequence, network systems are being targeted more by
attackers [1] with malicious intent [2]. To detect intruders in a
network system, there are generally two approaches: signature-
based and anomaly-based detection. Signature-based systems
maintain a database of previously known attacks and raise
alarms when any match is found with the analyzed data.
However, they are vulnerable to zero-day attacks.

An anomaly in a network means a deviation of traffic data
from its normal pattern. Thus, anomaly detection techniques
have the advantage of detecting zero-day attacks. However, in
a complex and large network system, it is not easy to define
a set of valid requests or normal behavior of the endpoints.
Hence, anomaly detection faces the disadvantage of having a
high false-positive error rate.

According to Ahmed et al. [3], the main attack types are
DoS, Probe, User to Root (U2R), and Remote to User (R2U)
attacks. Ahmed et al. [3] mapped the point anomaly with the

U2R and the R2U attacks, the DoS attack to the collective
anomaly, and the Probe attack to the contextual anomaly.

Machine learning techniques, in many cases they have
outperformed the previous state-of-the-art models. As UNSW-
NBI15 [4] is a benchmark network anomaly detection dataset,
numerous studies have been done on it. However, to evaluate
the same dataset many different setups were adopted (Section
Il). For example, train and evaluate on train data [5], [6]
. Ten-fold cross-validation on train data [7], [8]), test data
[9], combined (train+test) data [10], [11]. Five-fold cross-
validation on train and test data [12] . Train on train data
and evaluate on test data [13], [14].

With so many different experimental setups, it is difficult
to find the single best work on this dataset. Moreover, works
that followed the same experimentation setup did not compare
their results with prior works in some cases (for example,
Kanimozhi et al. [6] and Nawir et al. [10] did not compare their
results with Koroniotis et al. [11]). Therefore, it is difficult
to validate improvements. Mogal et al. [5] and Kanimozhi et
al. [6] mentioned near-perfect detection scores. However, they
did not mention the significant technical flaws regarding their
approaches, which we have explained in Section IV-B. Some
other works [6], [10], [12] followed only one validation setup.
Hence, it is impossible to compare those works with the ones,
which have worked on the same dataset but with different
validation setups.

The novelty and contributions of this work are as follows:

o We have provided a thorough study of the UNSW-NB15

dataset with feature engineering, preprocessing, selection.
« We have explored the performance of a boosting algo-
rithm in binary classification on the dataset following all
experimentation setups found from prior studies whereas
each of the previous works focused on only one setup.

¢« We have compared our results to prior state-of-the-art
works using all related performance metrics.

Our results show that feature engineering can make the
model more generalized. So our model performance improved
in cross-validation experiments, as well as when evaluated on
separate test data. We have also shown a very small false
alarm rate (1.83% - 4.81%). Our work can help in detecting
unseen anomaly attacks better having very few false alarms.
And Our different experimentation setups will help visualize
the impact of validation strategies on the model performance
of this dataset.

The rest of the paper has been organized as follows.
SectionlI describes the recent works related to NIDS (Network
Intrusion Detection Systems) on the UNSW-NB15 dataset.
Our proposed methodology has been explained in Section
III. Section IV describes the experimentation setups and our
results as well as some comparisons with the prior state-of-the-
art. The rest of the comparisons regarding evaluating on train
and test data, cross-validation approaches have been shown in
Section V. Finally, SectionVI has the concluding remarks.

II. RELATED WORKS

For network intrusion detection KDDCUP99, NSL-KDD,
DARPA, UNSW-NB15 are among the benchmark dataset. As
a popular dataset, we focus on binary classification of the
UNSW-NBI15 dataset [4] which is used in several anomaly
detection works. Based on the model evaluation process, we
have divided them into several parts.

A. Random train test

Moustafa et al. [15] used central points of attribute values
and Association Rule Mining for feature selection on a high
level of abstraction from datasets UNSW-NBI15 and NSL-
KDD. They have partitioned the datasets into train and test
sets following an equation. Then evaluated performance us-
ing Expectation-Maximisation clustering (EM), Logistic Re-
gression (LR), and Nave Bayes (NB). Moustafa et al. [16]
also proposed a beta mixture model-based anomaly detection
system on the UNSW-NBI15 dataset. They first selected eight
features from the dataset, then randomly selected samples from
it. In another work, Moustafa et al. [17] selected random
samples from the UNSW-NB15 dataset and ran ten-fold cross-
validation on it.

B. Validation on same data used for training

Mogal et al. [5] used machine learning classifiers on both
UNSW-NB15 and KDDCUP99 datasets. They achieved nearly
100% accuracy on both datasets using Naive Bayes and
Logistic Regression on train data. Kanimozhi et al. [6] choose
the best four features of the UNSW-NBI15 dataset using
the RandomForest classifier. They also used a Multi-Layer
Perceptron to show how neural networks would perform on
this dataset.

C. Cross validation

Koroniotis et al. [11] selected the top ten features of the
UNSW-NBI15 combined (train+test) dataset using Information
Gain Ranking Filter. Then they ran ten-fold cross-validations
using machine learning techniques. Among the techniques
applied, DT (Decision Tree C4.5 Classifier) performed the best
at distinguishing between Botnet and normal network traffic.

Suleiman et al. [7] explored the performance of machine
learning classifiers on benchmark and new datasets (UNSW-
NB15, NSL-KDD, and Phishing) using ten-fold cross-
validation. They found the RandomForest classifier performs
the best. Nawir et al. [10] applied ten-fold cross-validation on
the binary classification of the combined (train+test) dataset

by using the WEKA tool. They also compared centralized and
distributed AODE algorithms based on accuracy against the
number of nodes.

Meftah et al. [8] applied both binary and multiclass clas-
sification on the UNSW-NB15 dataset. They found that for
binary classification SVM performs the best in ten-fold cross-
validation and decision tree (C5.0) for multiclass classification.
Hanif et al. [9] used ANN(Artificial Neural Network) on the
same dataset. They compared their performance with prior
works on the NSL-KDD dataset, instead of works on the same
dataset. Meghdouri et al. [12] applied feature preprocessing
and principal component analysis on the UNSW-NB15 dataset.
Then performed five-fold cross-validation using a RandomFor-
est classifier.

D. Validation on separate test data

Moustafa et al. [14] analyzed the statistical properties of
the UNSW-NB15 dataset and showed that it is more complex
compared to the KDD99 dataset. Vinaykumar et al. [18]
used classical machine learning classifiers, and deep neural
networks on several intrusion detection datasets. The classical
models performed much better than the neural network mod-
els. Dahiya et al. [19] applied feature reduction techniques on
both larger and smaller versions of the UNSW-NB15 dataset.
Bhamare et al. [13] tested the robustness of machine learning
models in cloud scenarios. They trained classifiers on the
UNSW-NBI15 dataset and tested them on a cloud security
dataset ISOT. They found that these models did not perform
well in the cloud environment.

E. Gap analysis

To the best of our knowledge, there has been no work that
has provided a thorough study of the UNSW-NB15 dataset
with feature engineering to improve results. Moreover, most
of the previous works on this dataset focused on only one
evaluation process. So it is difficult to make a proper com-
parison among them. For example, the performance achieved
in five-fold cross-validation, can not be compared with that
achieved in ten-fold cross-validation. So, we have evaluated
our model performance using all possible experimentation
setups found in prior arts and provided a thorough comparison
with prior state-of-the-art techniques. We have also used
feature engineering to reduce overfitting, thereby providing a
more generalized model.

III. PROPOSED METHODOLOGY

We have targeted only to perform binary classification on
the dataset. We have used Kaggle kernels for running our
models. It provided us with 4 CPU cores, 16 Gigabytes of
RAM when this work was done. In the following subsections,
we have described how the dataset was prepared for experi-
mentation and the performance metrics used for evaluation.

A. Dataset Description

We have used the UNSW-NB15 dataset [4] which is a recent
benchmark dataset for NIDS (Network Intrusion Detection

TABLE I
UNSW-NB15 DATASET DESCRIPTION
Type Train Test
Normal 56,000 37,000
Anomaly 119,341 45,332
Total 175,341 82,332

Systems). The dataset was created at the Cyber Range Lab of
the Australian Center of Cyber Security. Compared to other
existing datasets (such as KDDCup99, NSL-KDD, DARPA),
the UNSW-NB15 dataset is more recent and better reflects
modern network traffic. UNSW-NB15 represents nine major
families of attacks by utilizing the IXIA PerfectStorm tool. The
main data set contains 2,540,044 observations. The authors
divided a part of this data set was divided into train and test
sets, which has been used in this work. The dataset description
is shown in Table I. We have considered binary classification
for this study. Hence, we have only predicted whether the
record is attack type or normal. The dataset labels class O for
normal and 1 for attack records. From Table I we can see
the train data is imbalanced. The majority of the records are
anomalies. However, in the test data, they are nearly balanced.

In the following list, we have described the 43 features
used by us from the UNSW-NBI15 dataset. Similar features
for source and destination are described together.

« proto : Transaction protocol.

« state: The state and its dependent protocol

o dur : Record total duration.

o sbytes & dbytes: Source to destination and destination to
source transaction bytes.

o sttl & dttl: Live value of source to destination and
destination to source time.

e sloss & dloss: Source and destination packets retransmit-
ted or dropped.

« service: http, ftp, smtp, ssh, dns, ftp-data, irc and (-) if
not much-used service.

o sload & dload: Source and destination bits per second.

o spkts & dpkts: Source to destination and destination to
source packet count.

e swin & dwin : Source and destination TCP window
advertisement value.

¢ stcpb & dtcpb: Source and destination TCP base sequence
number.

o smean & dmean: Mean of the packet size transmitted by
the source and destination.

o trans_depth: The pipelined depth into the connection of
http request/response transaction.

o response_body_len: The actual uncompressed content
size of the data transferred from the servers http service.

e sjit & djit: Source and destination jitter (mSec).

« rate: a feature based on record start and end time.

o sinpkt & dinpkt : Source and destination interpacket
arrival time (mSec).

o synack: The time between the SYN and the SYN_ACK
packets.

e ackdat: The time between the SYN_ACK and the ACK
packets.

o teprtt: The sum of synack and ackdat.

e is_sm_ips_ports: If the source and destination IP ad-
dresses are equal and port numbers equal then, this
variable takes value 1 else 0.

o is_ftp_login: If the ftp session is accessed by user and
password then 1 else O.

The following features are calculated in the last 100 con-

nections from the current record.

o ct_state_ttl: According to specific range of values of
source/destination time to live for each stat .

o ct_flw_http_mthd :Number of flows that has Get and Post
methods in http service.

o ct_ftp_cmd: Number of flows that have a command in ftp
session.

e ct_srv_src & ct_srv_dst: Number of connections that
contain the same address for service and source or
destination.

e ct_src_ltm & ct_dst_ltm: Number of connections of the
same source and destination address.

o ct_src_dport_Itm & ct_dst_sport_ltm: Number of connec-
tions of the same source address and the destination port
or same destination address and the source port.

e ct_dst_src_Itm: Number of connections of the same
source and the destination address.

And our target column is ’label’, which is O for normal and

1 for attack records.

B. Preprocessing

We have performed the preprocessing on the data set using
the following steps :

1) Feature engineer categorical columns: We have found
many categorical labels to have a very low frequency. To make
it easier for the model to learn from these categorical features,
labels with low frequency were converted into a single label.

« For state feature, except the top five labels by frequency
CFIN’, ’INT’, "CON’, "REQ’, ’RST’) other labels were
converted into label ’others’.

o For service columns, labels except ’-’, ’dns’, ’http’,
smtp’, “ftp-data’, *ftp’, ’ssh’, ’pop3’ were converted into
“others’ labels.

o For the proto column, ’igmp’, ’icmp’, 'rtp’ labels were
combined into the label ’igmp_icmp_rtp’. Then labels
except 'tcp’, ‘udp’, ’arp’, 'ospf’, ’igmp_icmp_rtp’ were
converted into label *others’.

Before this, test data had new categorical values present.
However, after this feature engineering, categorical value sets
for train and test data became the same. That enabled us to
use one-hot encoding on the dataset. If any categorical value
present in test data was never present in train data. Then in
one-hot encoding, there will be no column for it in the train,
but it will in test data. So the column mismatch will make the
prediction difficult.

TABLE II
FEATURE IMPORTANCE
Feature I::Eg: Feature I::g (c):-

sttl 16.53 sjit 1.7
ct_state_ttl 11.06 dloss 1.22
dload 7.2 proto 1.21
dttl 4.93 djit 1.14
dmean 4.19 sloss 0.9
ackdat 3.8 ct_src_ltm 0.83
rate 3.79 ct_dst_Itm 0.83
dinpkt 3.51 stcpb 0.81
sbytes 3.23 ct_dst_sport_Itm 0.8
smean 2.85 dtcpb 0.75
sload 2.72 swin 0.62
state 2.71 is_sm_ips_ports 0.57
dpkts 2.59 ct_src_dport_Itm 0.57
teprtt 2.49 service 0.51
ct_srv_dst 2.49 spkts 0.47
ct_dst_src_Itm 2.43 ct_flw_http_mthd 0.17
sinpkt 2.41 Sponse_rg'o dy ten | 016
ct_srv_src 2.2 trans_depth 0.14
dbytes 1.93 dwin 0.02
synack 1.76 ct_ftp_cmd 0.01
dur 1.76 is_ftp_login 0.01

2) Scaling: We have applied StandardScaler from the
scikit-learn preprocessing library on all non-categorical fea-
tures. It was fitted on the train data, then the fitted scaler was
used to convert both train and test data. It converts values
using the following equation:

T —p
(o

xr =

D

where p is the mean value and o is the standard deviation.

3) Feature Selection: We have used the RandomForest
classifier of sklearn with default parameters to calculate feature
importance on the train dataset. We have first preprocessed the
dataset using previous steps. Then averaged feature importance
over ten-fold cross-validation. We have converted the values
into percentages, for easier understanding. Then sorted them in
descending order. From there we have chosen to drop features
with less than 0.5% importance value. The dropped 7 features
are response_body_len, spkts, ct_flw_http_mthd, trans_depth,
dwin, ct_ftp_cmd, is_ftp_login. In Table II we have shown the
chosen features with corresponding importance.

4) OneHotEncoding: We have used the pandas library to
OneHotEncode all the categorical features. It became possible

as after using feature engineering, categorical value sets be-
came the same in train and test datasets. The final number of
features in our dataset is 53.

C. Evaluation metrics

In this section, we have discussed the performance metrics
we have used in our experiments on the UNSW-NB15 dataset
[4]. We have also used them to compare the performance of
our approach with previous works.

1) Accuracy: It is the ratio of the number of correct
predictions to the total number of input samples.

TP+TN

= 2
aeeuraY = rp Y TN+ FP+ FN @

2) Precision: It is the ratio of the number of correct positive
results to the number of positive results predicted by the
classifier.

. TP 3)

recision = ——————

P TP+ FP
3) Recall or Detection Rate or True Positive Rate): It is the
ratio of the number of correct positive results to the number

of all positive samples.

TP
ll= ——— 4
T T TP FN @
4) F1_score: The harmonic means of precision and recall.
1
fl_score = 2% ————— ®)
precision + recall

5) False Positive Rate (FPR): 1t is the proportion of incor-
rectly identified observations.
FP
== 6
FP+TN ©)
6) False Alarm Rate (FAR): The probability that a record
gets incorrectly classified.

FPR

FP+ FN
FAR = 7
FP+FN+TP+TN ™
7) ROC AUC: 1t computes the Area Under the Receiver
Operating Characteristic Curve (ROC AUC) from prediction

SCOres.

IV. EXPERIMENT AND RESULTS

For evaluating the UNSW-NB 15 dataset, we have performed
ten-fold cross-validation using Stratified KFold of the sklearn
library with a random shuffle set to true. We have used
several popular machine learning classifiers to measure the
prediction performance. The models were run mostly with
default parameters. We have set the random state to 1 for all
of them so that the results are reproducible. All models except
LightGBM [20], were from sklearn library version 0.23.0. Dur-
ing prediction, for LightGBM we used the best iteration. The
used models are listed below with their important parameters.

1) LogisticRegression : penalty = 12, max_iter = 100

2) GradientBoosting: learning_rate = 0.1, n_estimators =

100, max_depth = 3

TABLE III
TEN-FOLD CROSS VALIDATION WITH DIFFERENT MODELS

TABLE IV
EVALUATING MODEL ON DATA USED FOR TRAINING

Metrics(%) Accuracy(%) | F1_score(%) Maetrics(%) Train Test
LogisticRegression 93.54 95.42 Accuracy 99.60 99.98
GradientBoosting 94.58 96.11 Precision 99.52 99.97

DecisionTree 94.99 96.32 Recall 99.89 99.98

RandomForest 96.08 97.14 F1_score 99.71 99.98
LighGBM 96.18 97.21 FPR 0.01 0.0004
AUC 99.99 99.99
3) DecisionTree: criterion = ’gini’, max_depth = None, Time(s) 243 237
max_features = None,
4) RandomForest: n_estimators = 100, criterion = ’gini’, TABLE V
TEN-FOLD CROSS VALIDATION
max_depth = None, max_features = None
5) LightGBM: learning rate=0.1, metric=binary_logloss, Metrics(%) e Test Tl]
num_round = 2000, early_stopping_rounds = 50.
. . . . Accuracy 96.18 98.18 95.19
The result of this experiment is shown in Table III. We —
have chosen the best model based on fl-score and accuracy. Precision 96.54 98.87 96.84
Here class labels are O for normal and 1 for attack records. Recall 97.89 97.80 95.58
So these metrics are the best choices to validate the model F1_score 97.21 08.33 96.21
performance. As shown in Table III, LightGBM achieved the
best performance in both accuracy (96.18%) and fl-score FPR 747 1.37 551
(91.21%). LightGBM (Ke et al. [20])is a highly efficient FAR 3.82 1.83 4.81
gradient boosting framework that uses tree-based learning AUC 99.44 99.81 99.26
algorithms. It follows a more complex leaf-wise split approach Time(s) 628.1 281.1 838.8

rather than a level-wise approach. Which reduces overfitting
and improves the validation results.

A. Handling class imbalance

From Table I we can see the train dataset is slightly imbal-
anced. The ratio of normal and anomaly records is 56: 119. We
used is_unbalance and scale_pos_weight parameters provided
by LightGBM to test whether handling class imbalance will
improve results. If is_unbalance is set to true, LightGBM
will automatically try to balance the weight of the dominated
label. Using scale_pos_weight, we can manually set weight
for the positive class. During ten-fold cross-validation in our
experimentation, we found using these parameters decreases
the fl1_score. So we have not used them finally. However,
during predicting on separate test data, we have found setting
is_unbalance to true improves the prediction performance
slightly.

B. Validation on same data used for training

Mogal et al. [5], Kanimozhi et al. [6] evaluated model
performance on the UNBSW-NB15 dataset without using any
cross-validation approach. The same data used for training the
model was used for validation too. To compare our model’s
performance with them, we have followed a similar setup. As
evident from the results shown in Table IV, this experimen-
tation setup does not truly reflect model performance. As the
model overfits on train data, its performance will be very poor
on a separate test set. For example, we have found our model
when overfitted on train data, only achieved 86.88% accuracy

and 89.14% f1_score on test data. So the models proposed by
both of those prior works should not be used in reality.

C. Ten-fold cross validation

Ten-fold cross-validation on train, test or
combined(train+test) dataset was performed by Meftah
et al. [8], Suleiman et al. [7], Nawir et al. [10], Hanif
et al. [9] . We have used the StratifiedKFold method
of sklearn.model_selection module with shuffle enabled to
perform the ten-fold cross-validation. Average scores achieved
in that process are shown in Table V. Interestingly we see
cross-validation on test data has the best results. This can be
because the test data is more balanced.

D. Validation on test data

In this experiment, we have validated the model trained
on train data using the separate test dataset of UNSW-NB15
following [13], [14], [18], [19]. As Meftah et al. [§] mentioned,
some columns have new labels in test data. However, after our
feature engineering process in section III-B, we were able to
overcome it. For this evaluation specifically, we have found
that setting parameters is_unbalance to True and learning rate
to 0.05 in LightGBM improved prediction performance. The
results are shown in Table VI along with comparisons with
prior arts. Our FAR and AUC scores for this case are 8.05%
and 98.67%. Our model outperforms the work of Vinayakumar
et al [18] by both accuracy and f1_score. Though Dahiya et al

TABLE VI
VALIDATION ON TEST DATA

Maetrics(%) Ours RF [18] | REP Tree [19]
Accuracy 91.95 90.3 93.56
Precision 89.59 98.8 83.3

Recall 96.60 86.7 83.2
F1_score 92.96 92.4 83.25
FPR 13.75 - 2.3

TABLE VII

PERFORMANCE COMPARISON WITH [7]

Metrics(%) RF [7] LightGBM
Accuracy 90.14 96.17
Precision 99.8 96.54

Recall 97.8 97.89
F1_score 98.7 97.20
FPR 0.10 7.48

[19] achieved better accuracy than ours, they had near a 10%
drop in fl_score than our model. In an intrusion detection
dataset where class distribution is imbalanced, f1_score is
more important.

V. COMPARISON WITH STATE-OF-THE-ART MODELS

In this section, we have compared our model performance
with prior state-of-the-art models on the same dataset. We
have arranged this section into subsections based on different
experimentation setups that were followed in those works.

A. Evaluation on train data

Mogal et al. [5] achieved 99.96% accuracy on the UNSW-
NB15 dataset using Naive Bayes and Logistic Regression,
which did not follow any cross-validation approach. A similar
approach was taken by Kanimozhi et al. [6] with the best
four features chosen using the RandomForest classifier. The
model achieved 98.3% accuracy. We have shown in Table IV
that in the same validation process, our model has achieved
near-perfect scores on both train and test data.

B. Ten-fold cross validation

Suleiman et al. [7] evaluated performance using ten-fold
cross-validation on train data. They found the Random Forest
classifier to have the best accuracy and fl1_score. We have
mentioned our model performance using the same validation
process in the train column of Table V. TPR and recall are
the same. Hence, we have mentioned only recall.

Meftah et al. [8] applied ten-fold cross-validation on the
train dataset and achieved the best accuracy of 82.11% us-
ing the SVM classifier. In the same validation process, our
model accuracy is 96.17%. Hanif et al. [9] applied ten-fold
cross-validation on the train and test dataset repeatedly using

TABLE VIII
COMPARISON OF OUR MODEL WITH KORONIOTIS ET AL. [11]

Classifier Accuracy (%) | FAR(%)
Decision Tree [11] 93.23 6.77
LightGBM 95.19 4.81

Artificial Neural Network(ANN) and achieved an average 84%
accuracy, 8% false-positive rate. In a similar case, our model
performance is better, 96.18% accuracy and 7.47% FPR as
shown in Table V. Though Meftah et al. [8] and Hanif et al. [9]
followed the same experimentation setup similar to Suleiman
et al. [7], none of them presented any comparison with it.

Koroniotis et al. [11] performed ten-fold cross-validation on
the combined dataset. The best result was achieved using the
Decision Tree C4.5. In Table VIII we have shown the com-
parison. Koroniotis et al. [11] presented model performance
with two metrics only, accuracy and FAR (False Alarm Rate).
Our model has shown better performance in both of them.

Nawir et al. [10] applied a similar ten-fold cross-validation
evaluation on the combined (train + test) dataset, using the
WEKA J48 classifier. They have mentioned achieving high
accuracy of 98.71% using the default parameter. However,
using exactly the same environment for multiple runs we have
found that is not true. It achieves around 94.6% accuracy on
average. That is lower than ours (95.19% accuracy).

C. Five-fold cross validation

We have found only Meghdouri et al. [12] to validate
using five-fold cross-validation. Also, they have not mentioned
any specific reason to not use ten-fold cross-validation like
prior works. No performance comparison was also presented.
Here we have not added any separate section for this. We
have presented our model performance using same validation
process in Table IX and X. Table IX shows our model
performance compared to theirs on five-fold cross-validation
of the train dataset. Their model achieved higher accuracy
(99%) compared to ours (96.18%). However, for precision,
recall, and f1_score our model performance is much higher.
Using the same validation process on the test dataset, from
Table X, our test accuracy is very close to theirs. However, as
before our precision, recall and f1_score are much better than
theirs. Our ROC-AUC scores are very close too. For intrusion
detection techniques f1_score is very important, in which our
model outperforms them by a large margin.

D. Validation on separate test data

Bhamare et al. [13] achieved accuracy 89.26%, 93.7% TP
and 95.7% TN at prediction threshold 0.5. Increasing the
prediction threshold to 0.7-0.8 their TPR improved to 97%,
but TN dropped to 80%. Where our accuracy, TP, and TN
are 91.95%, 97%, and 86% at threshold 0.5. Moustafa et
al. [14] achieved 85.56% accuracy and 15.78% FAR using
the Decision Tree technique built-in Visual Studio Business
Intelligence 2008 with the default input parameters. Our model

TABLE IX
COMPARISON WITH MEGHDOURI ET AL. [12] (TRAIN DATA)

Metrics(%) Train [12] Train
Accuracy 99.0 96.18
Precision 85.9 96.56

Recall 85.1 97.87
F1_score 84.9 97.21
ROC AUC 99.8 99.43
TABLE X
COMPARISON WITH MEGHDOURI ET AL. [12] (TEST DATA)

Metrics(%) Test [12] Test
Accuracy 98.9 98.08
Precision 84.9 98.79

Recall 85.1 97.7
F1_score 84.9 98.24
ROC AUC 99.8 99.81

accuracy is 91.95% and 8.05% FAR, which outperforms them
in this validation setup.

E. Results summary
The followings are the summary of our results:

o Feature engineering can make the model more general-
ized and improve performance on separate test data.

e Nearly 17 features have the importance of less than 1%.

e Our model can better predict network anomaly than
normal records. This is due to the presence of more
anomalies in the dataset than normal.

VI. CONCLUSION

In this paper, we have presented a boosting algorithm-based
model for performing binary classification of the UNSW-
NBI15 dataset. Different experimentation setups were followed
to compare our performance with prior works. Results show
that our model outperforms state-of-the-art works in most
metrics. We have shown why the experimental setups followed
by some prior works are heavily overfitted and should be
avoided. Even when using a different cross-validation ap-
proach, our model outperforms most prior arts. Our model
is also found to perform well on test data when it is fitted
on train data only, validating the generalization of our model.
So we believe this will help the network security community
in improving anomaly detection. This study only performs a
binary classification. However, our proposed algorithm can
be easily adapted to multiclass-classification by changing
the LightGBM objective parameter to 'multiclass’. In the
future, we intend to improve the performance of multiclass-
classification on this dataset in a similar way.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8

[t}

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

REFERENCES

M. 1. Ashiq, P. Bhowmick, M. S. Hossain, and H. S. Narman, “Domain
flux based dga botnet detection using feedforward neural network,” in
IEEE Military Communications (MILCOM). Norfolk, VA, USA: IEEE,
12-14 Nov., 2019.

M. A. Jonas, R. Islam, M. S. Hossain, H. S. Narman, and M. Atiquz-
zaman, “An intelligent system for preventing ssl stripping-based session
hijacking attacks,” in IEEE Military Communications (MILCOM). Nor-
folk, VA, USA: IEEE, 12-14 Nov., 2019.

M. Ahmed, A. N. Mahmood, and J. Hu, “A survey of network anomaly
detection techniques,” Journal of Network and Computer Applications,
vol. 60, pp. 19-31, 2016.

N. Moustafa and J. Slay, “UNSW-NBI15: a comprehensive data set for
network intrusion detection systems (UNSW-NB 15 network data set),” in
Military communications and information systems conference (MilCIS).
Canberra, Australia: IEEE, 10-12 Nov. 2015, pp. 1-6.

D. G. Mogal, S. R. Ghungrad, and B. B. Bhusare, “Nids using machine
learning classifiers on unsw-nb15 and kddcup99 datasets,” International
Journal of Advanced Research in Computer and Communication Engi-
neering (IJARCCE), vol. 6, no. 4, pp. 533-537, 2017.

V. Kanimozhi and P. Jacob, “Unsw-nbl15 dataset feature selection and
network intrusion detection using deep learning,” International Journal
of Recent Technology and Engineering, vol. 7, pp. 443-446, 01 2019.
M. Suleiman and B. Issac, “Performance comparison of intrusion
detection machine learning classifiers on benchmark and new datasets,”
in 28th International Conference on Computer Theory and Application,
10 2018, pp. 447-489.

S. Meftah, T. Rachidi, and N. Assem, “Network based intrusion detec-
tion using the unsw-nb15 dataset,” International Journal of Computing
and Digital Systems, vol. 8, no. 5, pp. 478-487, 2019.

S. Hanif, T. Ilyas, and M. Zeeshan, “Intrusion detection in iot using
artificial neural networks on unsw-15 dataset,” in 16th International
Conference on Smart Cities: Improving Quality of Life Using ICT &
IoT and AI). 1EEE, 2019, pp. 152-156.

M. Nawir, A. Amir, N. Yaakob, and O. B. Lynn, “Effective and efficient
network anomaly detection system using machine learning algorithm,”
Bulletin of Electrical Engineering and Informatics, vol. 8, no. 1, pp.
46-51, 2019.

N. Koroniotis, N. Moustafa, E. Sitnikova, and J. Slay, “Towards devel-
oping network forensic mechanism for botnet activities in the iot based
on machine learning techniques,” in International Conference on Mobile
Networks and Management. Springer, 2017, pp. 30-44.

F. Meghdouri, T. Zseby, and F. Iglesias, “Analysis of lightweight feature
vectors for attack detection in network traffic,” Applied Sciences, vol. 8,
no. 11, 2018.

D. Bhamare, T. Salman, M. Samaka, A. Erbad, and R. Jain, “Feasibility
of supervised machine learning for cloud security,” in International
Conference on Information Science and Security. Pattaya, Thailand:
IEEE, 2016, pp. 1-5.

N. Moustafa and J. Slay, “The evaluation of network anomaly detection
systems: Statistical analysis of the unsw-nb15 data set and the compar-
ison with the kdd99 data set,” Information Security Journal: A Global
Perspective, vol. 25, no. 1-3, pp. 18-31, 2016.

——, “A hybrid feature selection for network intrusion detection sys-
tems: Central points,” arXiv preprint arXiv:1707.05505, 2017.

N. Moustafa, G. Creech, and J. Slay, “Anomaly detection system using
beta mixture models and outlier detection,” in Progress in Computing,
Analytics and Networking. Springer, 2018, pp. 125-135.

N. Moustafa, J. Hu, and J. Slay, “A holistic review of network anomaly
detection systems: A comprehensive survey,” Journal of Network and
Computer Applications, vol. 128, pp. 33-55, 2019.

R. Vinayakumar, M. Alazab, K. Soman, P. Poornachandran, A. Al-
Nemrat, and S. Venkatraman, “Deep learning approach for intelligent
intrusion detection system,” /EEE Access, vol. 7, 2019.

P. Dahiya and D. K. Srivastava, “Network intrusion detection in big
dataset using spark,” Procedia computer science, vol. 132, pp. 253-262,
2018.

G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and
T.-Y. Liu, “LightGBM: A highly efficient gradient boosting decision
tree,” in Advances in neural information processing systems, 2017, pp.

3146-3154.

