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Abstract—An intelligent system to prevent SSL Stripping based
session hijacking attacks is proposed in this paper. The system is
designed to strike a delicate balance between security and user-
friendliness. Common user behavior towards security warnings
is taken into account and combined with well-known machine
learning and statistical techniques to build a robust solution
against SSL Stripping. Users are shown warning messages of
various levels based on the importance of each website from
a security point of view. Initially, websites are classified using a
Naive Bayes classifier. User responses towards warnings messages
are stored and combined at a central database server to provide a
modified and continuously improving rating system for websites.
The system serves to both protect and educate users without
causing them an unnecessary annoyance.

Index Terms—session hijacking, SSL stripping, naive bayes
classifier, HTTPS, split-half correlation.

I. INTRODUCTION

Session Hijacking is one of the most widespread security
problems in modern computing [1], [2]. As more and more
people rely on internet services for conducting sensitive ac-
tivities like banking, online shopping, earning money online,
accessing academic record, etc., session hijacking is proving
to be a very damaging problem.

A session is a lasting connection between a user (or user
agent, i.e., browser) and a server, usually involving the ex-
change of many requests and responses. The server typically
maintains it, and on the server end, there is a data store or
table to hold user state and user-specific information.

Each row of the table contains information about a particular
session. The index to this table is known as the Session ID
or Session Key. The key is generated on the first request or
after an authentication process and is exchanged between the
browser and the server on every request. The most common
method for exchanging Session IDs is through HTTP Cookies.

Session hijacking refers to the exploitation of a valid com-
puter session where an attacker takes over a session between
two computers. This is done by stealing the Session ID, which
can be used to get into the system and snoop the private data.

In general, unencrypted HTTP sessions are quite simple
to hijack using Man-in-the-Middle (MITM) attacks [3]–[5].
Usually, HTTPS connection is recommended for preventing
such Session Hijacking [6]. However, even HTTPS, which is
HTTP over SSL, is vulnerable to hijacking [7].

SSL consists of three protocols: Handshake Protocol;
Record Protocol; and Alert Protocol. Handshake protocol
establishes a secure connection between the server and the
client by agreeing upon a common set of cipher suites and pa-
rameters. Record protocol encrypts the data using the agreed-
upon key established in the handshake protocol. Alert protocol
alerts the other party by sending custom messages whenever
an intrusion is detected.

The handshake protocol is the most vulnerable part of the
SSL connection. The reason is that this protocol is done over
unencrypted plain text, which makes it vulnerable to man-
in-the-middle attacks. Attacks on SSL can be classified into
two types primarily: SSL Sniffing attacks and SSL Stripping
attacks. The SSL Sniffing attack is carried out through spoofed
certificates. However, modern browsers will show a warning
dialog when spoofed certificates are detected; hence, users
enjoy a protection layer. On the other hand, SSL Stripping
type of attacks does not result in any warning messages for
users, making them more dangerous.

In SSL Stripping attack, the attacker strips out the HTTPS
from server responses and presents the users with HTTP links.
This can be done mainly due to two reasons. Firstly, users do
not usually type in the full URL in the browser address bar
including ”https://...”. They only type in the domain name.
This cause the browser to send a HTTP request to the server.
The server then sends a response redirecting it to a HTTPS
site. Secondly, many websites use HTTP for the landing page
to improve performance. It only uses HTTPS for login and
other sensitive parts.

Fig. 1. SSL Stripping attack



Because of this, the MITM attacker can intercept the
response from the server, and strip out the HTTPS to send
the client HTTP links. Thus, the attacker establishes an HTTP
connection with the client while maintaining an HTTPS con-
nection with the server. The client does not see any warning
message and sends all sensitive data over plain text, which the
attacker can easily intercept.

The main contributions of this paper are (i) proposing
a system for preventing SSL stripping attacks through the
combination of machine learning and statistical techniques
with common user behavior patterns (ii) real implementation
of our system. We have come up with an accurate rating
system for websites with a combination of web page content
classification and user behavior. Then we present users with
relevant and accurate warning messages of various levels
according to the rating of the websites in order to both educate
them and prevent them from being victims of SSL stripping-
based session hijacking attacks.

The rest of the paper is organized as follows. In section II,
we describe various existing work on SSL Stripping attacks.
In section III, we explain our system in detail. In section IV,
we discuss our experimental setup and a sample demonstration
of how the system comes up with gradually evolving website
ratings. Section V has on our plans to improve the system fur-
ther by enhancing the rating algorithms and user-friendliness,
and finally, Section VI concludes the paper.

II. EXISTING WORKS

There have been few research works on SSL vulnerabilities
[8]–[18], particularly focusing on SSL Stripping.

Burkholder [8] used dsniff and webmitm to implement
a MITM attack through ARP spoofing on the SSL protocol.
Callegati et al. [9] used ARP poisoning and DNS spoofing to
intercept all traffic between the host machine and the server.
Finally, webmitm was used to forge a fake certificate to
launch the MITM attack. ssldump tool was used to dump
the captured traffic into a text file.

Hossain et al. [10] performed a detailed survey on protection
mechanisms to the SSL-based session hijacking attacks.

Cheng et al. [11] identified two potential vulnerabilities.
Firstly, the SSL handshaking is done over plaintext, which
leaves the certificate vulnerable to forging. Secondly, websites
often initiate HTTPS connection by HTTP connections first.
The authors used both types of vulnerabilities to launch two
different types of attacks. The first one shows the users a
fake certificate dialog, but the second one does not show any
warning. The authors proposed Static ARP tables, EVSSL
certificates, and Two-way authentication as potential solutions
to the vulnerabilities.

Prandini et al. [12] detailed the SSL Stripping attack. They
demonstrated that websites typically use HTTPS for only a
selected few pages while using HTTP for the other parts of
the website. This is done because HTTPS connection is about
20-50 times slower than HTTP connection. However, this left
users vulnerable to the SSL stripping attacks.

Joshi et al. [13] proposed a method to prevent SSL stripping
attacks with a browser plugin which hashed the password sent
by the client with the server’s certificate. This prevented fake
certificate attacks.

Nikiforakis et al. [15] proposed a method called HProxy
to prevent SSL stripping attacks by using browser history to
gain a profile of which websites used HTTPS connection, and
prevented a fake HTTP connection from taking place. It built
a profile of safe SSL-enabled websites from the history of
requests and responses.

Fung et al. [16] proposed a system called SSLock that works
by enforcing special protected domains which enforce SSL
connection. The same authors also proposed HTTPSLock [17]
which was designed to enforce the HTTPS protection and
forbid users to embrace invalid certificates.

The ISAN HTTPS Enforcer [18] enforces HTTPS connec-
tion from the client end using a custom javascript API which
can be easily called from secure web servers. This overcomed
the problem of user bypassing security warnings, as no security
warning was shown, and also prevents SSL stripping attacks
by introducing the HTTPS enforcer to handle redirections from
the client side. SSL stripping attacks cannot trick the HTTPS
enforcer because it maintains a list of secure URLs which are
always forced to use the SSL connection.

From analyzing the reasons behind successful SSL Stripping
attacks, we summarize the main features of SSL Stripping and
its preventive measures as follows:

• SSL stripping is successful primarily because users are
not educated about the difference between HTTP and
HTTPS connections, and therefore are not aware of the
importance of using encrypted connections while sending
sensitive data to websites.

• Users cannot to be expected to type in HTTPS in the
URL bar to ensure secure a connection.

• Users have a habit of ignoring warning dialogs even if
the warning cautions against the possibility of leakage of
sensitive data.

• False negative rate is very high, while the false positive
rate is relatively low in user response towards security
warnings.

Based on the above findings, we have proposed a solution
to the SSL Stripping attack addressing the above mentioned
issues.

III. PROPOSED SYSTEM

In the section, we present a novel method of preventing SSL
Stripping-based hijacking attacks based on our research on
existing work, and overcoming the various limitations of them.
We use a heuristic approach and apply machine learning to
identify potential vulnerable websites and try to protect casual
users from SSL Stripping attacks. In our system, there is a
balance between security and user-friendliness based on the
security rating of a particular website.

Our system can be broken down into two parts – the client
side and the server side systems. The system is depicted in
Fig. 2. The client downloads a global filter list from a central



Fig. 2. Full system flowchart

web server. This list contains the security rating of all the
websites in the database. This list is used to show a various
level of warning messages to end users as described below.
Periodically, the client sends users’ response to the server so
that machine learning can be applied to improve the security
ratings of the websites.

A. Client-side System

The client-side system works by monitoring the HTTP
POST requests sent from web browsers and intercepting the
connection. If the connection is HTTPS, then the request is
not intercepted at all. Furthermore, if the request type is not
POST type, then again no interception takes place. The client-
side flow chart is shown in Fig. 3.

Fig. 3. Client-side system flowchart

Here, as the user sends each POST request, we check if it
is an HTTPS site. If so, we do not take any action. If it is
an HTTP site and includes a password or login field, then we
intercept the request.

Once we have intercepted a request, we check if the site is
in our database. If it does exist in our database, then we fetch
the security rating from the database.

If the site is not in the database, we at first classify the
web page to one of the five pre-defined classes. These classes
are banking, e-commerce, education/email, social media, and
miscellaneous. In our particular implementation, we used a
Naive Bayes classifier on the content and URL of the web
page for classification. We used a sample of 100 web pages
of various classes to train our Naive Bayes classifier.

At first, we use the dump flag of the UNIX tool w3m to
fetch the content of our web page, and then apply our Naive

Bayes classifier on the content to classify it to one of the
five pre-defined classes. Each class of website has a different
security rating. Banking and e-commerce sites are assigned
higher ratings, as they are more vulnerable to SSL stripping
type of attacks. The ratings for various classes are shown in
Table I.

TABLE I
CLASSES OF WEBSITES

Class of website Rating Security Level
Banking 1.0 High
E-commerce 0.9 High
Education/Email 0.7 Medium
Social Media 0.5 Medium
Miscellaneous 0.1 Low

We found that the URL of a web site can be valuable in
classifying it. The reason is that it is widespread for banking
sites to contain keywords such as ”bank”, educational sites
to contain ”edu”, and so on. Therefore, we separate the
components of the URL into words and then run a separate
Naive Bayes classifier on it. We look for keywords such
as ”bank”, ”mail”, ”shop”, ”edu”, ”uni” etc., and separate
them from other parts. For example, xyzbank.co.uk will be
separated into ”xyz”, ”bank”, ”co”, and ”uk”. The classifier
will then easily be able to classify it as a banking site. Through
an empirical approach, we found that giving the URL-based
classifier 25% weight, and the content-based classifier 75%
weight produces the best results.

Once having the rating for a website, an appropriate warning
message is displayed based on the rating of the site. There are
three levels of warning:

Fig. 4. Highest warning level

a) Highest level: This warning level is shown if the
security rating of the website is higher than or equal to 0.8.
This level of warning blocks the POST request and forces
the user to manually add the website to a white list before
proceeding.

b) Medium level: This warning level is shown if the
security rating of the website is higher than 0.2 but lower
than 0.8. This level of warning also blocks the POST request,
but the user can continue browsing to the site by clicking on
the ”continue” button.

Fig. 5. Medium warning level.



c) Low level: This warning level is shown if the security
rating of the website is lower than 0.2. This warning does not
block the request, and browsing continues as usual. However,
the user can optionally add the website to a blacklist.

Fig. 6. Low warning level

Users’ actions are tracked in each level of warning and
recorded it in the database. These records are periodically
sent to a central server. Also, the updated database of website
ratings is periodically fetched from the central server.

B. Server-side System

The server gathers the user’s actions from various clients
and uses that information to improve the security rating of
websites, as depicted in Fig. 7. The algorithms in the server
side can be broken down into mainly two parts.

Fig. 7. Server-side flow diagram

First of all, we take all the website in our existing database
to calculate the 50% regression point for our dataset. We use
a well known statistical approach called split-half reliability
testing to find the correlation coefficient r. In this approach,
we partition the user data for each website into two equal sized
sets and find out the correlation between the two partitions.
Once finding the correlation coefficient r, we then use this
value, along with the average sample size x to find out the
point of 50% regression by using Equation (1) in Algorithm 1.

t =
1− r

r
x (1)

t, the point of 50% regression tells us is how much weight
to give to our classifier-derived rating as opposed to the rating
we learn from user behavior. If the value of t is higher than
the number of user samples, then more weight is given to the

Algorithm 1 To measure the point of 50% regression
Input: Websites in database
Output:t point of 50% regression, t = (1-r)/r * x

1: get all websites from database
2: partition all websites into two sets of equal size
3: run a correlation between the two sets
4: find correlation coefficient r
5: x = average sample size
6: point of 50% regression, t = (1− r)/r ∗ x
7: return t

Algorithm 2 To update the rating of each website
Input: Websites and entries in database with t

Initialization :
1: for each website w in database do
2: sample of w = t
3: sum of w = initialRating(w) ∗ t
4: score of w = sum of w / sample of w
5: end for

Updating :
6: for each entry d in database do
7: w = get website of d
8: p = warning level of d for w
9: a = user action of d for w

10: if a == respect then
11: increment sample of w by 1
12: increment sum of w by 1
13: score of w = sum of w / sample of w
14: else if a == bypass then
15: if p == high then
16: increment sample of w by 0.8
17: score of w = sum of w / sample of w
18: else if p == medium then
19: increment sample of w by 0.5
20: score of w = sum of w / sample of w
21: else if p == low then
22: increment sample of w by 0.2
23: score of w = sum of w / sample of w
24: end if
25: end if
26: end for

classifier. If the sample is higher, then user’s actions have more
influence on the website’s rating.

Once having the value of t, we apply Algorithm 2 to update
the rating of each website. After finding the 50% regression
point, we set a score of each website to a value found from
the heuristics applied on that website and award t number of
samples initially. After that, we iterate through each entry in
the database and update the score rating for each website. If
the entry indicates the user respecting the error message, then
we add that as one full sample. However, if the user bypasses
the error, then we award a fraction of a full sample, depending
on the warning level. If a high warning level was shown, and
the user still bypassed, then we give that action 80% weight.



For a medium warning level, we give 50% weight, and for a
low level, we give 20%.

The rating update equation can be written as:

ratingnew =
ratingold × nsample + naccept

nsample + naccept + weight× nreject
(2)

Here, nsample is the number of current samples, naccept is
the number of instances where the user accepted the warning
message, nreject is the number of instances where the user
rejected the warning, and weight is a variable that depends
on the current warning level of the site. If the current warning
level is high, then its value is 0.8; if the current level is
medium, then its value is 0.5; and if the current level is low,
then its value is 0.2.

The rationale behind the different weights for different user
actions is explained by the habit of users when confronted
with warning dialogs. Users usually ignore security warnings.
Hence, the false negative rate is very high. However, when a
user accepts a security warning, this is likely to be a genuine
action. Therefore, the false positive rate is low. Now, different
warning levels in our system pose different levels of difficulty
to bypass. If the highest warning level is shown, then the user
has to manually add it to the whitelist. Therefore, this action
is given more weight than the medium warning where the user
simply has to click a button to bypass.

We keep using this algorithm iteratively based on data
received from the client side, and as the sample size of user
data increases, the noise goes down, and the security rating of
each website more truly reflects the actual vulnerability of that
site. In this way, we have combined heuristics and machine
learning to provide end users with robust protection against
SSL stripping attacks. In the next section, we demonstrate our
experimental setup and the application of our algorithms on
sample data.

IV. EXPERIMENTAL SETUP AND DEMONSTRATION

We use a simulator to demonstrate how our system works
with some real-world websites. For this, we chose five web-
sites of various level of importance to apply our Naive Bayes
algorithm and then update their rating using the simulated user
behavior.

In our test setup, we use a transparent proxy called Squid
on Ubuntu Linux operating system. The Squid proxy software
allows filtering and redirecting network traffic in a transparent
way, that is, without the client software knowing about it. We
wrote a redirector script for this in Python.

First, we used a sample of 100 websites of various cat-
egories to train our Naive Bayes classifiers – both content-
based and URL-based. We assigned 25% weight to URL-based
classifier and 75% weight to the content-based classifier. We
arrived at those ratings through an empirical approach and
found them to give the best results.

We plan to explore using alternate algorithms to Naive
Bayes for improved website classification, as we gather more
real-world data. Furthermore, we decided to only use text
content and URL of websites for our classification purpose.

We tried incorporating the HTML tags of pages to see if
they helped in providing better results. However, the HTML
tags of web pages did not improve the classification; rather, it
provided worse accuracy. Therefore, we used the dump flag of
UNIX tool w3m to extract only the text content of web pages
for classification.

After training our classifiers, we take 5 sample websites of
various categories and apply our classifier on them. The initial
ratings for these sites are shown in Table II.

TABLE II
INITIAL RATINGS

Website Class Security Level Rating
dutchbanglabank.com Banking High 1.0
gmail.com Education/Email Medium 0.7
buet.ac.bd Education/Email Medium 0.7
facebook.com Social Media Medium 0.5
stackoverflow.com Miscellaneous Low 0.1

We then simulate user behavior towards warning messages
for these websites. The result of the simulation is summarized
in Table III.

TABLE III
RESULT OF USER BEHAVIOR SIMULATION

Website Accepted Warning Rejected Warning
dutchbanglabank.com 156 44
gmail.com 122 78
buet.ac.bd 147 53
facebook.com 68 132
stackoverflow.com 11 189

After that, we figure out the point of 50% regression by
partitioning the user data for each website into two sets of
equal size (100 samples each) and find out the correlation
coefficient r between the two sets. This technique is known
as Split-half correlation. Table IV shows the data used for
correlation analysis.

We explored an alternative to the split-half correlation
technique, called Cronbach’s Alpha to gain a better measure
of the correlation coefficient by reducing potential errors
caused by random sample variance. Cronbach’s Alpha can be
thought of as the average of all split-half correlations from
all possible splits in the data. This helps reduce errors but
is computationally more expensive. Therefore, we decided to
stick with simple split-half correlation. Once having enough
real-world data, we will revisit Cronbach’s Alpha to see if the
extra computational time is worth it to achieve better accuracy.
We can find out the correlation coefficient r = 0.916 from this

TABLE IV
PARTITIONED DATA FOR CORRELATION ANALYSIS

Website Sample 1 Accept % Sample 2 Accept %
dutchbanglabank.com 70 86
gmail.com 69 53
buet.ac.bd 78 69
facebook.com 40 28
stackoverflow.com 5 6



data. The average sample size here was 100. From this we find
out the point of 50% regression.

t =
1− 0.916

0.916
100 = 9.17

Therefore, we can treat nine samples as a point of 50% regres-
sion. Finally, we can apply our rating update algorithm to each
of the websites as shown in Table V. Here, we can see that the

TABLE V
RATING UPDATE FOR EACH WEBSITE

Website Updated rating Security Level
dutchbanglabank.com r = 9∗1.0+156

9+156+0.8∗44 = 0.82 High

gmail.com r = 9∗0.7+122
9+122+0.5∗78 = 0.75 Medium

buet.ac.bd r = 9∗0.7+147
9+147+0.5∗53 = 0.84 High

facebook.com r = 9∗0.5+68
9+68+0.5∗132 = 0.51 Medium

stackoverflow.com r = 9∗0.1+11
9+11+0.2∗189 = 0.21 Medium

security level of buet.ac.bd moved from initial Medium
level to updated High level and stackoverflow.com
moved from initial Low level to updated Medium level. In
this way, we update the ratings based on the user behavior
data. Finally, we can improve our Naive Bayes classifier by
applying it on the updated database.

V. FUTURE PLANS

In the real-world setup, we plan to use a Google Chrome
extension to provide the functionality described in the previous
section. In the real world, we will also ensure privacy for users.

A. Browser extension

We plan to build an extension for the Google Chrome
browser using JavaScript. which will provide the functionality
required for intercepting the connection and showing various
levels of warning based on the security rating of each site and
the filter lists. By using an extension, the users do not have
to go through the hassle of manually having to update the
program, and are also ensured security and privacy.

B. Ensuring privacy

User privacy is a crucial factor here. As this involves the
sensitive issue of users browsing habit being monitored, it is
important to ensure the data remains strictly anonymous. In our
system, no identifiable user data will be stored at the server
end. That way, the user’s browsing habit cannot be tracked
down by any party.

VI. CONCLUSION

In this paper, we have described the SSL Stripping based
Session Hijacking threat. We have analyzed existing works that
solves such threats. We have proposed an intelligent system
to prevent SSL Stripping based session hijacking attacks.
The experimental setup of our model is demonstrated. Our
system is designed to strike a delicate balance between security
and user-friendliness. Common user behavior towards security
warnings is taken into account and combined with well-known

machine learning and statistical techniques to build a robust
solution against SSL Stripping.

We can conclude that our system provides a good balance
between getting out of the users’ way when not required, en-
suring security in most crucial situations, and at the same time
educate users on secure browsing habits. Our system learns
over time from user behavior, and thus gradually improves as
more and more user data becomes available. For these reasons,
we believe this system scales very well to real-world usage.
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