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Abstract—In the present age, transportation is humankind’s
necessity. With the increasing population, it has produced adverse
effects like rapid consumption of fuel resources, high carbon
emissions, and global traffic issue. In such cases, vehicle sharing
is gaining attraction as a possible candidate solution. We have
implemented a vehicle sharing rider matching model which
matches users reaching nearby destinations. The algorithm then
undergoes another matching layer, which filters users based on
user characteristics. Best-matched users are then added to a final
itinerary forming the route for the commute. In our model,
we have used New York City cab zone locations with real-
time navigation using Google Maps. We have introduced the
concept of “User Threshold Time (UTT),” the time riders are
willing to spend to pick other riders. Our major motive is to
complete the pool for the maximum number of trips based on
user characteristics. On a global scale, our model aims at saving
resources and improve overall global atmospheric conditions.
Results show that our matching model can be achievable in a
reasonable time constraint.

Index Terms—vehicle sharing, carpooling, ride-sharing, char-
acteristics, user feedback system, user threshold time

I. INTRODUCTION

Vehicle sharing previewed itself during World War II oil and
energy crisis [1, 2]. With time, world conditions improved and
people got financially stable, resulting in a downfall of ride-
sharing. Indeed, automobiles provide many benefits, but they
also provide myriad problems. In the past decade, there has
been an immense growth in the overall number of vehicles
which has directly impacted the present traffic conditions
[3]. Solutions like High occupancy vehicle (HOV) lanes are
proposed to address the traffic issue, but there has not been a
significant improvement in current traffic scenarios [4].

Moreover, fuel consumption has increased exponentially,
and eventually, there is a possibility of outrunning these
natural resources [5]. Despite the government’s efforts in
renewable energy generation, the rate of fuel consumption is
comparatively high than renewable energy consumption [6].
The byproduct, vehicle emissions has detrimental effects on
the environment and human health [7].

In such cases, vehicle sharing is a possible solution. It is
the process of ride-sharing among riders traversing a series
of sources and destinations. Moreover, carpooling increases
the number of HOV lanes, providing smoother transportation.
Reduced vehicle count means reduced fuel consumption. How-
ever, ride-sharing with strangers can be a problem if a central
controlling system is absent as seen at airports. Therefore, our

aim is to design a model than matches users based on their
characteristics which result in a joyful and stress-free ride.

Our objective is to consider five characteristics and tolerated
threshold time while designing the matching model to increase
rider count. Initially, we register users with characteristics like
chatty, friendliness, safety, punctuality, and comfortability. We
perform matching of users having similar or closer charac-
teristics. In registration, the User Threshold Time (UTT) is
taken. This is the possibility of maximum waiting time that
the rider and driver agree on. UTT times are between 10 and
30 minutes. Based on minimal UTT of a rider in a trip, drivers
pick other riders to respect tolerated time of other riders. If
the time required to pick up other rider exceeds trip UTT, the
commuter is not picked. Threshold time assures travelers do
not wait long picking other riders during a journey.

The key contributions of this paper are as follows: (i) a
carpooling system is created based on characteristics of users,
(ii) a model that considers matching using tolerated time; and
(iii) an extensive simulation to test the efficiency of the model
using real-time data.

Results show that it is possible to allocate best-matched rid-
ers using characteristics and UTT. Our proposed model aims to
increase vehicle sharing while respecting rider considerations
and decrease consumer frustration.

The rest of the paper is organized as follows. In Section II,
the existing techniques are explained. In Section III, the
feedback-based carpooling model is discussed. In Section IV,
the proposed model is explained in detail. In Section V, the
simulation environment with obtained results are discussed.
Finally, Section VI has the concluding remarks and our plans
to extend the proposed work.

II. LITERATURE SURVEY

With good availability of the internet and advanced tech-
nologies, carpooling has observed immense development.
Companies like Uber and Lyft are coming up with ideas to
enhance vehicle sharing[8]. However, social barriers and lack
of equipment discourage carpooling. State governments are
proposing plans to reduce taxes on ride-sharing vehicles and
use public transport with ride-sharing services, but the overall
market for vehicle sharing remains low [4, 9].

A. Popular Commercial Applications
We started our research with Lyft, Uber, Juno, and Waze

[10]. States like New York, California, Florida, and Texas are



most popular for these cab services [11]. California is home
to many car-sharing companies; hence, vehicle sharing is used
heavily in California. The New York City Cab [12] is working
with Uber contributing notably to ride-sharing services. While
researching this case, we came across a data repository which
included real-time NYC taxi zone locations [13], later forming
the data source for our simulation.

Our findings directed to several issues. Passengers do not
possess any knowledge of other riders. Drivers learn the
passenger count after reaching the pick-up location. Such
events prove stressful to all commuters. A vital issue found
was the unexpected longing of the journey due to the sudden
addition of a rider resulting in disputes and distress [14].
Another critical issue is the model design, “Same-Source-
Same-Destination” and “Many-Sources-One-Destination” [15]
approach which does not meet rider expectations.

Noting the stated issues, we provide trip data to all riders at
the end of every trip formation. We tend to get best-matched
riders using their characteristics. Also, rider waiting time or
UTT never surpasses the registered UTT.

B. Modern Technologies with Vehicle Sharing

Internet of Things and Cloud Computing are speeding up
the building of smart cities. Indeed, car-sharing is a part of
such smart systems.

IoT allows efficient device connectivity and communication
for data broadcasting. A published notification can be sent to a
billion connected devices. With carpooling, every vehicle can
be connected to a data hub logging every minor update [3, 16].
Vehicle status can be notified to broadcasting riders, facilitat-
ing faster decisions for road traversing, vehicle tracking, and
location-based requests clustering. These features can be used
for frequent status updations, quicker rider-driver associations,
and faster trip formation.

Cloud services bring numerous benefits to any comput-
ing system [17, 18]. Enabling cloud services enables better
scalability, availability, plus efficient load management [17].
Using the cloud decreases the overall costs of any system.
Albeit, time decides the fate of an application. In the cloud
environment, requests from a client device travells and interact
with servers and travel back to client devices to render server
data introducing a latency. To reduce this delay, we learned
about Fog Computing. A small group of servers is placed
near the client location. Computations take place at this small
cloud reducing the travel time. [19]. We utilized this idea of
Fog computing for our carpooling technology. Currently, the
computation is processed at the client machine.

To conclude, modern technologies play a crucial role in
application design and resource management. Also, factors
like load balancing, timeliness of result, user experience, and
quality of service are equally vital.

C. Multiple Sources Multiple Destinations (MSMD)

MSMD includes same source-same destination, same
source-different destinations, different sources-same destina-
tion, and the most vital, different sources-different destination.

It utilizes models like star networks, Dijiktras many sources
one destination problem, and greedy algorithms [9, 20, 21].

One methodology stated the formation of multiple routes us-
ing star networks until finding an optimized one. The drawback
is the computation time for developing multiple routes until
finding the best route [9]. A similar approach is completing
the journey through different transportation systems [22] like
buses, bikes [4, 23] or even simply walking. Indeed, this again
adds up extra time in the entire journey but follows the model
of multiple sources and multiple destinations.

III. SYSTEM MODEL

The system model reflects an entire framework of a system.
The heart of our designed algorithm is the procedure utilized
for matching between riders.

A. Problem Statement

Post scrutiny of many articles and reference papers, we
found the major issue lies is in the matching of riders and time
management [9, 18, 21]. Vehicle sharing can be encouraged if
there are good matching rates and trip formation time. Also,
users should be provided with meta-data of the trip. Indeed
user locations and sensitive information are encapsulated for
security purposes. Also, user expectations are met using mul-
tiple sources and multiple destinations model, which is an
excellent choice for carpooling with time management.

B. Architecture

Vehicle sharing model starts with an association of a driver
to a trip, followed by finding and filtering riders based on
characteristics and UTT. The model’s last step is saving
the rider feedback. Figure 1 provides an architecture of our
implemented matching model.
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Fig. 1. Architecture for vehicle sharing rider matching model.

Throughout the implementation, we have maintained a
client-server environment. Initially, a user broadcasts a rider
request which includes user-id, source, and destination. Based
on the user-id, we retrieve the characteristics and UTT. This
data document forms the first stage of the trip. At the server-
side, there is an active repository of all drivers. When drivers
are active or awaiting broadcasting requests, their location
and status are continuously updated for faster allotment to



incoming requests. For an incoming request, all available
drivers from the request originating zone are retrieved. The
closest driver to user source location is selected. This adds
the next vital data document of the driver in the trip.

The source zone is sent as a parameter to the rider matching
functions. The first function retrieves best, or close char-
acteristics matched rider list. The second function checks
the traveling time of every rider’s source and destination to
broadcasting rider’s source and destination. If the traveling
time is less than trip UTT, the rider is accepted. These
functions execute until the seating capacity of the vehicle is
reached or until there are no riders in the rider list.

At epilogue, all riders rate the driver and other riders. The
feedback system is a novel design to improve the matching
rate. While rating, a rider selects a rating number for five
characteristics on a scale of 1 to 5.

IV. PROPOSED MODEL

The model inchoates five stages: The broadcasting rider,
the closest driver, finding riders by characteristics and UTT
matching, and saving user feedback. A brief description of
every step is summarized in the following sub-sections.

A. The Broadcasting Rider

The algorithm begins through a broadcasting rider which
includes the broadcasting source zone and location forming
starting point for the trip. Destination zone, location, five
characteristics are also recorded. The source zone is referred
for finding the closest available driver.

B. The Closest Driver

Using the broadcasting rider source zone, a list of available
drivers is retrieved. A driver is added to the list if the driver
is active but the commuting vehicle has not reached seating
capacity. The traveling time between the driver’s current
location and broadcasting rider’s location are checked using
Google Map Distance Matrix API. The driver with the shortest
traveling time is selected and added in the trip.

C. Searching Riders with Characteristics Matching

The trip data now consists of the broadcasting rider loca-
tions, five characteristics, and the closest driver. Other broad-
casting riders are searched with similar or closer characteris-
tics. Based on our several simulations, we concluded that the
odds of finding broadcasting riders with similar characteristics
is low. If riders are found, we add them in matched rider queue.

If the seating capacity is not reached more riders are
searched by altering each characteristic. For example, if the
characteristics are chatty:4, safety:3, punctuality:3, friendli-
ness:1, comfortability:2, an alteration is done by adding or
subtracting 1 to the chatty score resulting in either 5 or 3. This
is defined as “closer” characteristic matching. Rider search
continues until the seating capacity of the vehicle is reached.
If the pool is still incomplete, all the broadcasting riders from
source zone are selected and added in the list. This model is a
default search model for Uber and Lyft. The rider list formed
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Fig. 2. Finding riders using characteristics matching. The output list or the
riders queue is used as input for the next matching layer, matching using UTT.

in this phase is given as the input in the next phase, matching
with UTT.

D. Searching Riders with UTT Matching

The broadcasting rider’s UTT is referred to as the trip-UTT.
For every rider in the list, a source and destination are selected
from the NYC Zone file. Mostly, the source location originates
from the same zone. Using the Google Map Distance Matrix
API, the traveling time is calculated between the rider’s source
and broadcasting rider’s source location. If the time is less
than or equal to UTT, the algorithm proceeds to the second
UTT check. The second UTT check includes calculating the
traveling time between the rider’s destination and broadcasting
rider’s destination and verifying if the time is less than or equal
to UTT. If both UTT checks are satisfactory, the rider is added
in the trip document. The UTT check is done for all riders in
the queue until it reaches the seating capacity.

E. Final Trip Document

The final trip document saves every rider’s source, desti-
nation, characteristics, UTT, driver details, and vehicle seat
capacity. Moreover, the overall time required for the journey
is noted. The trip document is the final step and is added to
the mongo trip collection.

V. SIMULATION AND RESULTS

A. Experimentation

At first, we selected a broadcasting rider with UTT 10
and a rider count of 100. The rider search begins based on
characteristics and then by UTT. If a match occurs, riders are
added in the trip else next rider is searched for matching. The
traversing of riders continues till the rider count of 100 is
reached. We ran the same code by increasing the UTT by 5
until it reached 30. Then, we increased the rider count by 100
until it reached 500. The complete simulation sequence can
be given by (10,100), (15,100), (20,100), (25,100),(30,100)...
(10,1000), (15,1000), (20,1000), (25,1000), (30,1000). The
first digit denotes the UTT and the second denotes the rider
count. We ran every simulation ten times.
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Fig. 3. Total trip count and percentage based on pool completion status.

B. Observations

The total trip count is 7159. Average trip formation time
is 0.80 minutes which is less than a minute. Figure 3 states
6348 trips completed the pool, and 811 trips did not. From
this analysis, our motive for pool completion for maximum
trips is achieved. Also, total rider count checked in the
complete simulation is 276400, out of which 93766 riders are
in the pool. Figure 4 depicts the classification of accepted
riders by exact or close characteristics match and alternative
characteristics match.

17%

83%

Fig. 4. Riders in the pool classified by the type of matching.

Matching rate is the number of riders in the pool divided
by the total rider count. If 10 riders are searched and 5
are accepted, the matching rate is 0.5. During the analysis,
we drafted the matching rate, the average number of trips
completed, and the average trip formation time. Figure 5
reflects as the rider count and UTT increases, the matching
rate increases. As UTT and rider count increase, more riders
are accepted at a faster rate, and more trips are completed.
Therefore, as drafted in Figure 6, there is more room for
riders which increases the total number of trips. Figure 7 states
that the increased rider count correspondingly increases trip
simulation time. In the end, we concluded, increase in riders,
and UTT increases the matching rate, total trip count, and total
trip simulation time.
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Fig. 5. Average matching rate per simulation event.
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VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed a vehicle sharing matching model
using user characteristics and User Threshold Time (UTT). To
show the efficiency, an extensive simulation is developed. The
performance is evaluated from 100 to 1000 riders with UTT
from 10 to 30 minutes. It is observed as the rider count and
UTT increase, the matching rate increases correspondingly.
We also achieved the goal of maximum trip execution with
pool completion. Also, the average trip formation time is less
than a minute, which contributes to the quality of service and
improved user experience.

Our future implementations include tracing the patterns
in the rider feedback system using the machine learning



algorithms. Matching will depend on the feedback score the
rider focuses the most rating other riders. Also, an Android ap-
plication with a pricing model may be developed for handling
the transaction of requests for riders and drivers.
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