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Abstract—Millions of users use the Internet for entertainment,
education, shopping and many other purposes. For instance; one
billion hours of YouTube videos are watched every day. One of
the key features of such platforms such as the entertainment
and shopping platforms is the recommendation system based on
past activities of users and the contents of the visited sites to
provide related contents to decrease search time and increase
the data availability. However, the content suggestions have
several challenges based on the platforms. Some challenges are:
collected data from users can be noisy, the media contents are not
well-defined, and users do not want to cooperate. To solve those
issues, YouTube recommendation, Netflix, AWS re:invent, and
similar commercial sites proposed the context-aware personalized
recommendation systems. Most of the recommendation systems
use implicit and explicit user past activities with mapping relation
between contents. However, the recommendation systems are
general and cannot be changed according to user characteristics
after visiting the suggested data. For example, a user mostly visits
the higher-ranking content which is related to the visited content,
and another user can visit the recent content which has high
feedback during the different days or even in an hour according
to mood. Therefore, in this paper, we propose a predictive
self-learning recommendation system. The algorithm predicts
what a user searches next by using prior collected information
and using machine learning to analyze the user behaviors
for the future activity. The results show that our proposed
recommendation system is efficient in terms of CPU usage and
response time while characterizing users’ behaviors in short
and long terms. In this paper, we only analyze the short term
characterizations of the proposed method. The proposed method
and related analysis can assist the shopping, entertainment and
similar recommendation systems to increase their efficiency by
well-characterizing users’ behaviors.

Index Terms—Prediction, recommendation, social media,
profiling I. INTRODUCTION

A large number of users use the Internet for entertainment,
education, shopping and many other purposes. For example;
one billion hours of YouTube videos are watched per day [1].
One of the key features of such platforms such as the
entertainment and shopping platforms is the recommendation
system based on past activities of users and the contents
of the visited sites to provide related contents to decrease
search time and increase the data availability. However, the
content suggestions have several challenges based on the
platforms.Some challenges are: collected data from users can
be noisy, the media contents are not well-defined, and users
do not want to cooperate [2]–[11].

To solve those issues, YouTube recommendation, proposed
a personalized recommendation system and grew to become
the largest online video community with vast amounts of

videos being watched daily [12]. Authors [12] present a
unique problem which our proposed algorithm attempts to
solve [12]. Some of those challenges include the fact that
videos are uploaded by individual users, thus have little or no
meta data (which is required for recommendation systems). In
addition, uploaded videos can be distributed to many users
in a matter of seconds which requires constant updates to
the recommendations [12]. Netflix uses a combination of
recommendation algorithms to create the ”Netflix Experience”,
a subscription-based system that has over 65 million users
streaming 100 million hours of movies daily [13]. AWS
re:invent is Amazon’s recommendation system made up of
various recommendation algorithms in order to personalize
the online store for each individual user [14]. The Amazon
online store drastically changes based on customer interests.
The main problems that Amazon faced and solved with the
implementation of their recommendation system include vast
amounts of data including millions of customer information,
billions of product data that all have to be compressed into
meaningful recommendations presented to the user in real
time [14].

The recommendation systems listed above are general and
cannot be changed according to user characteristics after
visiting the suggested data. YouTube recommendation system
considers several parameters such as the related content,
popularity, channels, location, past activities, language, user
profiles according to mobility [15] or according to profile
setups [7], and time period while recommending videos to
users [12]. Netflix uses not only local media related videos
but also global related videos while suggesting to users
because Netflix subscribers spend only 60 to 90 seconds
to find a video to watch or the subscribers move another
activity such as reading book [13]. Amazon recommendation
system suggests the similar type object as well as the
object collection which was bought by other users in the
recommendation system [14]. However, the similar approaches
identify the long-term behaviors of the users but limit to
identify the short-term behaviors. For example, a user mostly
visits higher-ranking contents out of suggested contents today
and the newest related contents out of suggested contents
tomorrow. Another user can visit the recent content which
has high feedback during the different days or even in an
hour according to the mood. Therefore, the aim of this
paper is to propose a predictive self-learning recommendation
system that takes into account users’ preferences before and



after selections are made. Recommendations are predicted
by the system ahead of time in order to quickly present
suggestions to users when they need without diminishing
the meaningfulness of the suggestions. The system gradually
learns the user’s personal preferences through their selection
habits and eventually narrow down those preferences to a set of
categories. To maintain the diversity of the suggested contents,
the similar approach with [12], [13] has been followed.

The objective of this paper is to create an algorithm that
predicts what users search next by using prior collected
information and using machine learning to analyze the user
behaviors for the future activity. Then, we apply a behavior
analyzer to update the prediction system by monitoring users
selections from suggested contents.

We use seven parameters which must be satisfied to make a
successful prediction. The parameters include; popularity [16],
similarity [16], currency [16], feedback [12], importance [12],
interest [13], and safeness [12] in addition to user profiles [7].
Popularity refers to data that is currently trending in this
location and worldwide [16]. Similarity is where the machine
learning algorithm is used as the system needs to identify
similar data within the data centers and return the most related
ones and increases the chances of a correct prediction [16].
Currency means how old or new the content is, therefore
returning the contents from a suitable period as needed by
the user [16]. Feedback helps the system establishes the
importance and safeness allowing users to acquire content that
is both important and safe [12]. Interest in data varies from
user to user, for example, a doctor is interested in medical
contents while a musician is interested in music [13]. Using
some or all of these criteria, the system searches our servers
for appropriate contents by using a tag system and returns
what are needed for users. Then, we apply the user behavior
analyzer to update the prediction system to improve the quality
of the suggested contents. The results show that our proposed
recommendation system is efficient in terms of CPU usage and
response time while characterizing users’ behaviors in short
terms. The long term analyzing with real-embedded system is
left for the future work.

The key contributions of this paper can be listed as follows:

• A predictive self-learning recommendation system which
improves the suggested content awareness for each
individual has been proposed.

• An extensive simulation has been developed by using
real-data with generated required parameters to analyze
the performance of the proposed recommendation system.

• The proposed system has been analyzed in terms of
the system performance, the system efficiency, and the
system integrity.

The rest of the paper is organized as follows: Section
II describes a general model of recommendation system. In
Section III, we explain the used parameters for the proposed
system. Section IV describes the used technique while
suggesting contents. Section V explains the methodology to
test our proposed recommendation system and Section V

Fig. 1. A user activity when interacting with the system.

consists of the results. Finally, Section VII includes the final
discussion and our plan to extend this work.

II. SYSTEM MODEL

Fig. 1 shows a user interaction with the suggested contents.
After suggestions are made, the user visits one of the suggested
contents. It is possible that the selected content does not exist
anymore because of consistency issues. If the content exists,
the recommendations are updated.

The predictive self-learning recommendation system is
based on a predictive algorithm that would greatly decrease
a user option selection complexity. The development of
this algorithm required a number of factors such as;
recognizing the algorithm criteria, research on content
suggesting parameters, and creating a measurement system
for parameters and the recommendation. The algorithm is
based on the following criteria; popularity, similarity, currency,
feedback, importance, interest and safeness in addition to user
profiles. Based on those criteria, a successful prediction can
be made [12].

Popularity of certain data is calculated by using trend
analysis and overall clicks. Trend analysis is when the system
analyzes the top trending data on the web and record that
data for future use. Overall clicks refer to the number of
times that data has been accessed. Similarity is acquired
through the tag system within the database. The database
holds all available data and labels each set of data with
one or multiple tags. Therefore, the similar data have the



same tags or the same category tags. Another way to acquire
similarity between the data is with the use of a machine
learning algorithm. The collaborative filtering algorithms are
used on most recommendation systems [3], [13] in recent
years. Currency refers to the data age and depends on how
users utilize the data; currency could be a big factor in
making a prediction. Feedback is what users provide the
system once the data has been accessed. Users’ feedbacks
are completely optional and can be a ”LIKE” or ”UNLIKE”
or ranking formats. Importance and safeness of the data also
are established through user feedback. Users can provide
additional details on a particular set of data; those additional
details include; safeness rating of the data (how safe the data
is) and importance rating of the data (how important the data
is). Finally, interest is acquired using a combination of some
criteria we have discussed above. The interest rating is the
unique interest that users have on a set of data. Therefore,
users interest in a set of data can be calculated through the
combination of popularity, currency, feedback, importance,
and safety as well as factoring in background information
given to the system initially by the user. Once all ratings have
been acquired, an overall rating for the user on a specific set
of data is calculated. Calculation of all ratings is discussed in
the next section.

III. SYSTEM METRICS

The overall ranking of a set of data which is used in this
paper:
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where α, β, γ, η, κ, ς and ψ are constant and:

• R (Link Ranking) - The overall ranking of the content
that the user has clicked. The overall ranking changes
from user to user in order to provide a more personalized
experience for each individual user.

• Uc (User Clicks) - The number of times the user has
clicked the link. This is considered to learn about the
user’s specific preferences. As this number increases, the
overall ranking of the link (for the specific user) also
increases, therefore more likely to be suggested.

• Fp (Positive Feedback) - The number of times the content
has received positive feedback from all users in addition
to the user past feedbacks for the same type of contents.
This is taken into account because the system needs to
learn the general opinion about users’ opinions to decide
whether to suggest it or not. Positive feedback increases
the suggestion rate.

• Fn (Negative Feedback) - The number of times the
content has received negative feedback from all users in
addition to the user past feedback for the same type of
contents. Similar to positive feedback, negative feedback
is considered because the system needs to learn the
general opinion about users’ opinions to decide whether
to suggest it or not. Negative feedback decreases the

suggestion rate. Therefore, (Fp-Fn) is the overall feedback
(general opinion on importance and safety of the link) by
all users. If it is negative, data has been more disliked than
liked, therefore less likely to be suggested by the system.

• Pl (Location) - The user can provide us with some
background information prior to using the system. This
background information includes the location of the
user which is considered by the system when returning
suggestions. It is compared to the upload location of
the content and given a score out of 10. For example;
location score can be 5 out of 10 if a user lives in the
United States, but the content is originally uploaded from
England. The closer the proximity, the higher score.

• Po (Occupation) - Similar to location, the occupation
of the user which is considered by the system when
returning suggestions. The category of the content is
compared and given a score out of 10.

• Pn (Nationality) - The language of the content and the
access location are considered and given a score out of
10.

• Pi (Interests) - The user can select several interests before
the suggestion made. Therefore, the interests of the user
is a factor while returning suggestions and given a score
out of 10.

• Oc (Overall Clicks) - It refers to the number of times
all users have accessed the content, gives the system a
general picture on the popularity. The higher number of
accesses (trending), the higher overall ranking, therefore,
the more likely the content is recommended.

The metrics above are used as a base for building a prediction
tailored to each individual user as well as to verify the integrity
of individual prediction. The algorithm engine makes use of
these metrics in order to make a customized prediction for
each individual user. The engine is discussed in the following
section.

Moreover, equation (2) shows the Collaborative Filtering
Machine Learning Algorithm [17] which is used to improve
the prediction algorithm over time. Given θ(1), ..., θ(nu) to
learn x(1), ..., x(nm),
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Equation (2) illustrates that given a matrix of user movie
genre preferences and a matrix of movie genre’s, one can
deduct the type of movie genre according to the user
preferences and vice versa [17]. Therefore, with the continued
deduction of both, the algorithm constantly updates itself and
objects in the recommendation system allowing more accurate
categorization of the objects. We used the similar approach
while improving our recommendation when a user selects the
suggested contents.
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Fig. 2. Recommendation improvement model for content suggestions.

IV. SYSTEM ENGINE

As mentioned in previous sections, the recommendation
requires several criteria such as popularity, similarity, currency,
feedback, importance, interest, and safety before the system
can make suggestions to users. After users select from the
suggested contents, we improve the recommendation system
by predicting the user short-term behaviors. As shown in
Fig. 2, a user interaction flow in the system, a user searches
contents or selects from suggestions. Once the user has input
for the selection, the system suggests the related contents to
the user based on the current information about users from the
system database and the above criteria. After the suggestions
are completed, and the user selects one option, the system
analyzes the relationship between previously suggested options
and the current selection of the users with the criteria which
are used before to improve the prediction algorithm. Finally,
the system recommends new and improved options based on
the improved the recommendations.

Algorithm 1 is the key factor to analyze the user
short-term behaviors by creating a relation between the
previous suggestions and the current selection. While creating
a relation, indeed, the double filtering is happening because
the same described criteria are used in the suggested contents.
However, this time content size is relatively small. Therefore,
the better relation is created in almost instant time, and then
related contents from all system are filtered for suggestions.

V. ANALYSIS

In this section, the simulation environment, used data, and
test cases which have been used to analyze the performance
of the proposed system, are explained.

Algorithm 1 Algorithm to improve recommendation systems
Require:

input - user profiles and past activities
output - suggestions

1: procedure
2: while user not done do
3: display suggestions
4: get user selections
5: if selection in DB then
6: display the content
7: create a relation: selected and suggested

options
8: update user recommendation system
9: display some suggestions according to the

new recommendation and some based on the previous
recommendation system

10: end if
11: end while
12: end procedure

A. Used Data in the Analysis

To test the efficiency of the recommendation system, the real
metadata and their links are downloaded from YouTube [18].
The downloaded metadata size is around 10GB. However, the
data which downloaded from YouTube does not include the
user information because of privacy issues. Therefore, the user
type information is generated from the simulation, and these
include user profiles, queries, interest, and user own feedbacks
for some contents.

B. Test Cases

Analysis of the recommendation system is tested based on
three main concepts; system performance, system efficiency,
and system integrity. System performance is measured through
response time, i.e., how long it takes from when the user
makes a selection to when the database is updated, and the
result is returned to the user. System efficiency is measured
by constantly monitoring CPU Utilization ensuring the system
is not be overwhelmed. System integrity is measured by the
uniqueness of suggestions that is returned to the user.

C. Simulation Design

In order to test the performance of the recommendation
system, we conduct an extensive simulation. The simulation
is implemented using Java programming language (Eclipse
IDE). Because of data size, one computer with quad-core 2.4
GHz with 16GB memory and 32MB cache is used. In the
simulation, we assume that users have already searched for
initial suggestions because that part is out of our scope. On
the other hand, users’ interactions with suggested contents are
critical for the simulation. Therefore, we focus on this part
during the simulation. The simulation generates a number of
users and allow the suggestions to be displayed based on users’
selections and past activities which are initially generates,
but then updates users’ profiles according to their selections.



While a user can continuously select one to ten links out of
1000 related contents available in the database, the simulation
allows the database to be updated according to selections,
allows the collaborative filtering algorithm to be updated, and
finally returns updated suggestions to users. In the simulation,
simulated users get the current suggestions from the system,
ten times select contents, and receive updated suggestions from
the system based on the selected contents.

VI. RESULTS

The results which are displayed in this section are
the average of 200 simulated realizations. However, while
we test the CPU utilization, we only consider the first
realization because the remaining realizations decrease the
CPU Utilization due the operating system optimization as
shown in Fig. 3. To test the CPU utilization, the first realization
was performed with an overall execution time of 60s to
observe the overhead of the algorithm. As presented in Fig. 3,
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Fig. 3. CPU Utilization while running the recommendation system.

CPU utilization initially very high because the simulation is
started, but then the utilization slowly decreases as expected.
We observe that in 35s, hundred simulated users get the current
suggestions from the system, orderly select ten contents, and
receive updated suggestions from the system based on the
selected contents. Because of 35s operations, CPU utilization
decreases after that time. From Fig. 3, we observe that the
CPU utilization is changing between 10% to 20% for this
simulation. From this data, we can conclude that the predictive
self-learning recommendation system does not demand too
much from the CPU and therefore, can run in harmony
alongside other applications on the system.

We also test the response time of the recommendation
system by analyzing the activities of ten different characteristic
users (active at the same time) as a result of one and ten
content selections as shown in Fig. 4. Because of each
individual characteristic, the creating content relations from
the selected options can consume distinct time for each
individual. Although, we run 200 realizations, the other
running application can also be a reason for different response
time for different users. Though small differences, the response
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Fig. 4. Response time for the activities of ten active users that have distinct
characteristic for one and ten consecutive selections.
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Fig. 5. Suggestion uniqueness comparison of the recommendation systems
with and without recommendation improvements according to one to ten
content selections out of 100 suggestions.

times are reasonable for each user because the average
response time can rise only upto 0.4s.

To test the learning of the system, we test the suggested
content uniqueness as a result of selections of simulated users
as shown in Fig. 5. In this scenario, we test the system
with and without recommendation system improvements.
Fig. 5 shows the average number of unique contents for
simulated users from one to ten continuous selections
comparing to the same recommendation system with/out
applying recommendation system improvements. While the
number of selections is increased from users, the differences
between the recommendation systems also increase. Indeed,
this shows that the proposed recommendation system also
affects the long-term suggestions in addition to short-term
suggestions.

We also test the recommendation system improvements
by only considering the one parameter of aforementioned
parameters such as popularity to test the uniqueness of
the suggested contents with and without recommendation
improvements over time to test the effects of each parameter to
the improvements. For this test, we used Popularity, Similarity
and Location parameters.

• Popularity mode considers the searched content with
popularity and only returns the popular related data of
searched contents from the database.
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Fig. 6. A number of unique suggestions from Popularity, Similarity,
and Location recommendation systems with and without recommendation
improvements out of 100 suggestions.

• Similarity mode considers the searched content with the
most related contents and only returns the most related
contents to the searched contents from the database.

• Location mode only returns the contents from the similar
location which users access.

Fig. 6 shows the average number of unique contents
for simulated users from ten selections comparing to
recommendation systems based on Popularity, Similarity,
and Location with/out applying recommendation system
improvements. Because of a limited number of popular
contents, the uniqueness of the suggested contents in
Popularity-based recommendation system is significantly
lower than the recommendation systems based on Similarity
and Location. On the other hand, Similarity has the largest
uniqueness because of larger selections options.

A. Summary of Results

Based on the results, we make the following observations:
(i) Recommendation system improvements do not decrease the
system performance because of double filtering overheads; (ii)
The uniqueness of the suggested contents gradually increases
while the users make consecutive selections, and (iii) The
recommendation system improvement has different effects on
different recommendation systems in terms of uniqueness of
suggested contents.

VII. CONCLUSION AND FUTURE WORK

In this paper, we proposed the Predictive Self-Learning
Recommendation System that uses a Collaborative
Filtering Algorithm as well as seven criteria (Popularity,
Similarity, Currency, Feedback, Importance, Safety, and
Interest) in addition to users’ profiles to make predictive
recommendations to users. The system is different from
traditional recommendation systems because it allows for
more diverse suggestions without decreasing the performance
of the system in terms of response time and CPU utilization.
We conduct an extensive simulation to test the performance
the proposed recommendation system in terms of system
performance, system efficiency, and system integrity. Our
experimental results show that response time can increase upto

0.4s and CPU utilization remains at 20% level. Moreover, the
uniqueness of the suggested contents increases while users
make selections.

Although, the proposed method and related analysis
can assists the shopping, entertainment and similar
recommendation systems to increase their efficiency by
well-characterizing users’ behaviors, the more work needs to
be done in terms of testing, used dataset, and the learning
methodology. Therefore, in the future, we want to test the
proposed method on a commercial website with different
types of recommendation systems according to actual user
clicks by analyzing the short and long term characterizations.
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