
PPHA-Popularity Prediction based High Data
Availability for Datacenter

Kuo-Chi Fang, Husnu S. Narman, Ibrahim Hussein Mwinyi, and Wook-Sung Yoo
Computer Science, Marshall University, Huntington, WV 25755

Email: {fang5, narman, mwinyi, yoow}@marshall.edu

Abstract—Due to the growth of Internet-connected devices
and extensive data analysis applications in recent years, cloud
computing systems are largely utilized. Because of high utilization
of cloud storage systems, the demand for datacenter management
has been increased There are several crucial purposes of
data center management, such as increase data availability,
enhance durability, and decrease latency. In previous works,
replication technique is mostly used to answer those purposes
according to consistency requirements. However, the most of
the works consider full data, popular data, and geo-distance
based replications by considering storage and replication cost.
Moreover, the previous data popularity based-techniques rely on
the historical and current data access frequencies for replication.
In this paper, we approach this problem from a distinct
aspect while developing replication techniques for a datacenter
management system which can dynamically adapt servers of
datacenter by considering popularity prediction in each data
access location. Therefore, we first label data objects from one
to ten to track access frequencies of data objects. Then, we
use those data access frequencies from each location to predict
the future access frequencies of data objects to determine the
replication levels and locations to replicate the data objects, and
store the related data objects to close storage servers. To show
the efficiency of our proposed methods, we conduct an extensive
simulation by using real data. The results show that our proposed
method has an advantage over the previous works in terms of
data availability and increases the data availability upto 50%.
Our proposed method and related analysis can assist Cloud and
BigData service providers to enhance their service qualities.

Index Terms—Data center management, popularity, prediction,
data access frequencies, latency

I. INTRODUCTION

Due to the growth of Internet-connected devices and
extensive data analysis applications in recent years, cloud
computing systems are largely utilized. Because of high
utilization of cloud storage systems, the demand for datacenter
management has been increased. One of the challenges of
datacenter management is the low performance because of
the data unavailability when the scale of datacenter increases.
To enhance system performance, several methods have been
proposed [1]–[5]. Authors in [1], [2] proposed a resource
scheduling method to increase the utilization rate of each
server in the system by considering the multi-dimensional
resource requirements (e.g., CPU, Memory and Storage) of
applications, and then schedule these applications to different
servers. It is expected that the performance of the system
would increase if the scheduling method does not waste
any resource. However, the performance of system may
decrease if many queries were scheduled to the same servers

or some of applications consume more times in allocated
servers. Authors in [3]–[5] considered the above limitations
and balance server loads in the datacenter. Distinct loading
metrics have been used to analyze the loading of each server
node for rearrangement in the system. For example, authors
in [3] calculated each physical server load and dynamically
move the assigned tasks from high loaded servers to lower
loaded ones. Authors in [4], [5] have a different approach
to solve the same balancing problem. Instead of moving tasks
inside the datacenter, initially, the tasks are assigned to servers
which utilize the servers by balancing loads.

All of the similar aforementioned approaches can solve
unbalanced load problem in the cloud data center, but they
neglect network-bottlenecked problem, which may be the
critical limitation for systems performance in datacenters.
Although some researchers consider the bandwidth utilization
in the datacenter network by balancing link utilization of
network system, some traffic issues still cannot be avoided [6],
[7]. For example, the network traffic may still appear if some
server nodes in the network are essential or have popular data
objects, which are accessed by many users. Therefore, the
network-bottleneck will still exist even though system tries
to make an appropriate utilization of bandwidth.

In addition, data replication [8] is used to decrease the
data loss because of network-bottleneck to increase the
data availability rate. In the replication, data popularity is
critical because of storage costs and system efficiency. The
popular data has higher load because of the excessive access
requests [9] which can result in data unavailability. However,
the less popular data has only a few requests for data
access. Therefore, while replicating data, data diversity must
be considered with load balancing to efficiently utilize the
resources [10]. However, the system which predicts the future
popularity of data can be more efficient. Therefore, the aim of
this paper is to increase data availability by considering not
only the current data popularity but also possibilities for future
data popularity in addition to network and load balancing.
Unlike [3], our system can dynamically adapt the structure of
datacenter with future prediction. In other words, the system
can pre-manage the datacenter so that the performance of the
system will be improved.

The objective of this paper is to develop a self-learning
management system for a datacenter which replicates data
to different server nodes according to popularity predictions
of data objects. We consider both utilization of local servers



and bandwidth limitations so that system can have better
performance. We adapt tree-like network architecture [4], [11].
Each server node has appropriate data based on the data access
location and their access frequencies. Then, the system keeps
track the popularity of each data object and decides their status
(hot, warm, or cold according to data access frequencies) [8].
After that, the proposed method associates a rank table
with prediction information about the future data access
probabilities and establishes the prediction table for future data
accesses. Based on the prediction table, the datacenter can
replicate hot data to more server nodes to increase scalability
and reduce network traffic. Moreover, for the data which
access frequencies are decreased, the proposed system holds
only three copies as similar to Three Random Replication in
different types of storages (e.g. HDD and Flash) to decrease
the storage cost. Inspired by [12], [13], the proposed method
dynamically activates or inactivate nodes according to the data
access frequencies so that system could save energy [13]–[16].
The results show that our proposed method can dynamically
adapt server nodes for future input and has an advantage over
other method strategies by increasing data availability upto
50% although the prediction can have errors.

The key contributions of this paper are as follows:
• A management system of a datacenter has been proposed

according to popularity prediction by considering load
balancing and bandwidth limitations.

• We develop an extensive simulation by using real-data to
test the performance of the proposed method and compare
the proposed method with popularity, location, and
classification based datacenter management techniques.

• The proposed method also tested by considering 0%
(perfect without error), 10%, 20%, 30%, 40% and 50%
prediction error rates to show the effectiveness of the
proposed system.

The rest of the paper is organized as follows: Section
II describes a general model of datacenter. In Section III,
our proposed data management system and the details of
the proposed method are explained. Section IV describes the
simulation design and the used test cases to analyze the
effectiveness of our proposed method. Section V consists of
the results, and Section VI includes final discussion and our
plan to extend this work.

II. DATA CENTER MODEL

In this section, we describe the general model of datacenter
(Fig.1). A data center is a cluster of servers with multiple
tiers. It contains routers, computers, and storages. The multiple
servers connect to each other by a number of routers. Based on
different approaches, managers can choose different network
architectures [4], [11], [17]–[19]. Some server nodes of the
network contain storage for storing data. There are several
types of storages, such as Solid State Disk (SSD) and Hard
Disk Drive (HDD). The system can get faster I/O reading with
SSD, but the life cycle of SSD is usually lower than HDD,
and data might be lost forever when storages are broken.
Some server nodes are external tiers for communicating

Fig. 1. Illustration of a datacenter.

to outside devices and allocating work to server nodes.
For example, in searching systems, an application sends a
searching query to the external interface or tier 1. Then,
the manager node allocates searching tasks to internal tier
nodes. After computing nodes get requests, they start searching
information from their storages and send back searching result
to manager nodes.

Fig. 2. System flowchart for worker and master nodes.

III. PROPOSED SYSTEM

In this section, we discuss the proposed method by giving
the details under Management, Network, Ranking, Metrics and
Replication subsections.

A. System Management

In this section, we present a system management
strategy which considers the resource utilization and
network-bottlenecked issues. We assume each server node in
datacenter network is located in different locations (see Section
III-B). Initially, data is allocated to nodes according to their
location information. For example; data object A would be
stored in node 1 which is located at location K if it has high
searching frequency at location K. Each server node tracks
its own data access and manages its child server nodes and

2



Fig. 3. The network architecture: C as Server controller, N as Server Node
which store data, RN as replica Node, CN as child Node of Server Node.

data replication. Besides, manager server nodes calculate the
status of data based on ranking algorithm (see Section III-D)
and dynamically active or deactivate server nodes according to
ranking information if the server nodes do not serve for other
data objects. As shown in Fig. 2, worker nodes and manager
nodes would dynamically adapt server nodes based on the
utilization and data ranking information. Therefore, the system
can balance the loading of each server node and increase the
utilization.

B. Network Architecture

In our system, we use the tree-like structure of data center
as shown in Fig. 3. Server controller connects to each working
server node and allocates queries to each node according to
the bandwidth of each link. There are three types of server
nodes. The first type is the server node which stores original
data. Other is the replica server node, contain some popular
data replication to decrease network traffic by spreading out
the popular data to different server node. The final type is the
child server node which replicates data from parents node to
reduce the loading of parents nodes.

C. Prediction

In this section, we present the prediction method which is
created for the media datacenter. However, the same strategy
can be applied to other types of datacenter. There are several
parameters which are listed in Table I to find the future
access rates for each data object. DA, IA, AD, DL, TU ,
and AR are normalized by obtaining the maximum value of
the P -prediction as 10 for each access location of the data
object. According to this prediction, we create the prediction
ranking table for each data object as shown in Fig. 4. Then by
considering AL rates for each data object, the data object is
replicated on the nodes which are close to the those locations
and determined according to Eq. (1).

D. Ranking Strategy

The ranking strategy in our system is inspired by [8].
Authors in [8] calculate the weight of data objects in terms

TABLE I
PARAMETERS WHICH ARE USED FOR PREDICTION

DA The direct access amount of the data object
UL Upload location of the data object
AL Access locations with their access amounts to

the data object
IA Indirect access amount of the data object
AD Application or user diversities of accesses to the

data object
DL Location diversities of accesses to the data object
TU Duration of the data object existence
AR The access rates of the related data objects

of the importance level of data according to data access. In
our system, we consider the popularity of data as the feature
to determine the popularity level of data. Each server node
records data access history and creates the frequency table of
data accesses. After that, the system generates a ranking table
by combining the frequency table and input of prediction to
determine the possible data access frequencies in the future.
Then, the system marks the levels of data objects, such as hot,
warm or cold, to decide whether the data should be replicated
or not. The highly accessed data objects are replicated to
more server nodes in case of high network traffic. On the
contrary, cold data is moved to low-performance nodes and not
replicated more than three times because of common Random
Three Nodes replication. Fig. 4 shows the schematic diagram
of the ranking algorithm. The ranking table has the information
about future data access so that data center can adapt data of
each node better to improve the performance.

Fig. 4. Schematic diagram of the ranking algorithm.

E. Metrics

The performance of the system can decrease if many users
request data from the same server node at the same time.
Our goal is to dynamically forward the requests to the nodes
which have the same data. If such nodes have not been created,
the data is replicated to an adjacent-child node and forward
requests to the recently created node to balance the high
loading. We adapt the loading metric from [3]. We consider
the multiple resources of each server node, such as CPU
utilization, memory utilization, and disk I/O performance.

3



Each node creates child nodes and replicates high popular data
objects if the node load is over the threshold. We define our
loading metric as:

N(t)i = CAvg(t)i/CMax(t)i+MAvg(t)i/MMax(t)i+IO(t)i/T (t)i (1)

where N(t)i is the resource utilization of server node i in
t period time. CAvg(t) is the average utilization of CPU of
server node i in t period time. MAvg(t) is the average of
memory utilization of server node i in period t. IO(t) is the
reading and writing time of server node i in time t period
time. Each node monitors their own utilization periodically
and decides if they need to balance the loading or not.

F. Replication

The purpose of data replication in distributed systems is to
provide a robust and consistent data access rate; and improve
application performance. According to [8], there are several
algorithm strategies for data replication, such as SB-MFA, the
larger data set has more replicas, or IB-MFA, more important
data set has more replicas. In our system, we adjust the
IB-MFA strategy and consider the ranking of data as the
importance of data object to make decisions to replicate data
to different server nodes. For example, data which is highly
accessed is replicated to more server nodes in the location
which data is highly accessed. On the contrary, data which
accessed less frequently is not be replicated and moved to
the server node which has low system performance (see
Algorithm 1). Moreover, the replication algorithm measures
the data relation in order to help system to decrease latency
and network traffic when many users or applications request
the same data or similar types of data at the same time. The
reason we consider the relation of data objects is that the same
application can access the multiple data objects at the same
time or in order. Therefore, the relation of data objects are keep
tracked, and if a data object is replicated, the related data is
also replicated to the same location or adjacent nodes. Because
of replication, the system can easily recover data from other
server nodes if correlated or non-correlated machine failures
happen.

IV. ANALYSIS

An extensive simulated has been designed according to
previous descriptions to evaluate the performance of our
system. We have used media datacenter searching scenario
in order to present the effectiveness of the proposed
prediction-based model by comparing to other based strategies
such as popularity, location (geo-distance), and classification.
We simulate the media data searching scenario with media
files. For testing media searching, we download raw metadata
from YouTube [20] and obtain the data set based on our needs
which include upload location, tag information, ranks, upload
time and so forth. Then, we also generate servers with their
locations. The location information is used to calculate the
distance between servers from the location of data access
requests. Each URL would be related a least one data tag for
searching to simulate the data relation between multiple tags.

Algorithm 1 Data-Replication Algorithm.
Require:

R(x), x ∈ data in Server Node
N(y), y ∈ [hot, warm, cold]

1: procedure
2: for each Nodei i ∈ [1, n] do
3: check rank of data in each server node
4: for each xj j ∈ [1,K] do
5: if R(xj) > Thresholdhot then
6: replicate data to N(hot) nodes
7: else if R(xj) > Thresholdwarm then
8: replicate data to N(warm) nodes
9: else

10: move data to low-performance node
11: deactivate nodes which have replicated data
12: end if
13: end for;
14: end for
15: end procedure

For the simulation, all server nodes can have different CPU,
Memory, and Storage capacities. However, for simplicity, we
assume that the servers have enough capacity for replications.
After the system stores the uploaded data to server nodes
according to different strategies, we evaluate the cost time
by random searching sets. We consider the response time as a
measurement to test the data availability because of bandwidth
limitation and the server reply time for each request [6], [12].
We calculate the response time by considering the number of
hops which is required to send the requested data (according
to delay and the distance between the node locations of the
data object in inner tiers). There are a number of different
data objects. The number of server nodes is changing between
100 and 1000 to test our proposed method under small and
large datacenter. We assume that the servers are located in
30 different areas, but data objects can be accessed from a
number of locations.

In order to analyze the performance of our system, we
compare our prediction-based method with other strategies.
We designed four different management approaches with the
same network architecture. The first is the classification data
management [18]. The classification type methods allocate
data to different servers based on their relations. The similar
types of data objects are located to close nodes. The second is
the location-based data management. This type of methods
allocates the data based on the distance between data and
servers. For example, data object A can be allocated in server
node K if the location of the data object is close to server node
K. In the third version, the data objects are managed according
to the popularity [9] (see Section III-D). For example, highly
accessed data objects in location A can be placed in the
server node, which is close to location A. The final is our
proposed method which combines popularity and prediction
to manage a datacenter. We simulate a different number of
server nodes of four cases and generate random and expected

4



data access request sets to evaluate the effectiveness of our
proposed method.

V. RESULTS

In this section, we show the experiment results under
different cases based on response times of the methods.
The results which are obtained here are as a result of 200
realizations.

Fig. 5. The response times of the methods while randomly requesting 200
times 50 different data objects from servers.

Fig. 6. The response times of the methods while randomly requesting 200
times 100 different data objects from servers.

Figs. 5 and 6 show the average response times of four
different methods as a result of 200 times random 50 and
100 data object requests, respectively. The results in Fig. 5
show the response time order as: Classification > Location
> Popularity > Prediction. The prediction has lower latency
comparing to other algorithms because Prediction method
estimates the future data request before the requests are made.
Moreover, the gap between methods is getting larger while the
number of nodes is increased. Fig. 6 shows that response time
of Prediction method is still lower than others even though
the data object requests are doubled. Again, the gap between
Prediction and other methods is getting larger.

Figs. 7 and 8 show the average response times of Popularity
and Prediction methods as a result of 200 times 50 and 100

Fig. 7. Popularity and prediction response times while requesting 200 times
50 different data objects from servers.

Fig. 8. Popularity and prediction response times while requesting 200 times
100 different data objects from servers.

data object requests, respectively. However, the requests are
not made randomly but according to Popularity and Prediction
assumptions. In both Figs. 7 and 8, Prediction method has
lower response time than Popularity. Comparing to Figs. 5 and
6 with Figs. 7 and 8, the response time is decreased because
the requests are made accordingly.

In addition to above results, we evaluate our proposed
method based on prediction errors to show the reliability.
Figs. 9 and 10 show Prediction response times while
requesting 200 times 50 and 100 different data objects,
respectively from servers based on different error rates. As
shown in Figs. 9 and 10, the response time of Prediction
maintain in a small range even though the input prediction is
not perfect. It indicates that the performance of the system is
not affected much when the prediction has an error upto 30%.
However, while the number of the requests are increased, 40%
and 50% prediction error rates are getting higher.

VI. CONCLUSION AND FUTURE WORKS

In this paper, we propose a datacenter management method
to increase data availability. To increase the data availability
by using a replication technique for a datacenter, the proposed

5



Fig. 9. Prediction response times while requesting 200 times 50 different
data objects from servers based on different error rates.

Fig. 10. Prediction response times while requesting 200 times 100 different
data objects from servers based on different error rates.

method can dynamically adapt servers of datacenter by
considering popularity prediction in each data access location.
We first label data objects from one to ten to track access
frequencies of data objects. Then, we use those data access
frequencies from each location to predict the future access
frequencies of data objects to determine the replication levels
and locations to replicate the data objects, and store the
related data objects to close servers which are determined
according to their CPUs, Memories, and storages. In order
to show the efficiency of our proposed methods, we conduct
an extensive simulation by using real data. We compare our
proposed method with Popularity, Location (geo-distance),
and Classification based strategies. The results show that our
proposed method has an advantage over the other strategies in
terms of data availability and increases data availability upto
50%. Our proposed method and related analysis can assist
not only Media service providers but also Cloud and BigData
service providers to enhance their service qualities.

Our future plan is to extend this work by investigating the
relation of data further to improve the performance. We also
could not show the cost of storage because of replications.
Therefore, in our future work, the storage cost analysis with

data relation will be investigated with our proposed prediction
method.

REFERENCES

[1] P. Vdovin and V. Kostenko, “Algorithm for resource allocation in data
centers with independent schedulers for different types of resources,”
Journal of Computer and Systems Sciences International, vol. 53, no. 6,
pp. 854–866, 2014.

[2] S. Nagendram, J. V. Lakshmi, D. Rao, and C. Jyothihi, “Efficient
resource scheduling in data centers using mris,” Indian Journal of
Computer Science and Engineering, vol. 2, no. 5, pp. 764–769, 2011.

[3] E. Arzuaga and D. R. Kaeli, “Quantifying load imbalance on virtualized
enterprise servers,” in Proceedings of the first joint WOSP/SIPEW
international conference on Performance engineering. ACM, 2010,
pp. 235–242.

[4] A. Plakunov and V. Kostenko, “Data center resource mapping algorithm
based on the ant colony optimization,” in Science and Technology
Conference (Modern Networking Technologies)(MoNeTeC), 2014 First
International. IEEE, 2014, pp. 1–6.

[5] N. T. Hieu, M. Di Francesco, and A. Y. Jääski, “A virtual machine
placement algorithm for balanced resource utilization in cloud data
centers,” in Cloud Computing (CLOUD), 2014 IEEE 7th International
Conference on. IEEE, 2014, pp. 474–481.

[6] J. F. Botero, X. Hesselbach, A. Fischer, and H. De Meer, “Optimal
mapping of virtual networks with hidden hops,” Telecommunication
Systems, vol. 51, no. 4, pp. 273–282, 2012.

[7] I. B. Mustafa and T. Nadeem, “Dynamic traffic shaping technique for
http adaptive video streaming using software defined networks,” in
Sensing, Communication, and Networking (SECON), 2015 12th Annual
IEEE International Conference on. IEEE, 2015, pp. 178–180.

[8] L. Zeng, S. Xu, Y. Wang, K. B. Kent, D. Bremner, and C. Xu,
“Toward cost-effective replica placements in cloud storage systems with
qos-awareness,” Software: Practice and Experience, vol. 47, no. 6, pp.
813–829, 2017.

[9] G. Ananthanarayanan, S. Agarwal, S. Kandula, A. Greenberg, I. Stoica,
D. Harlan, and E. Harris, “Scarlett: Coping with skewed content
popularity inmapreduce clusters,” in Proc. of EuroSys, Salzburg, 2011.

[10] E. Keller, J. Szefer, J. Rexford, and R. B. Lee, “Nohype: Virtualized
cloud infrastructure without the virtualization,” in Proc. of ISCA, 2010.

[11] A. Goswami, K. K. Pattanaik, A. Bharadwaj, and S. Bharti, “Loss
rate control mechanism for fan-in-burst traffic in data center network,”
Procedia Computer Science, vol. 32, pp. 125–132, 2014.

[12] H.-S. Kim, J. Paek, and S. Bahk, “Qu-rpl: Queue utilization based rpl
for load balancing in large scale industrial applications,” in Sensing,
Communication, and Networking (SECON), 2015 12th Annual IEEE
International Conference on. IEEE, 2015, pp. 265–273.

[13] L. Shi, Y. Shi, X. Wei, X. Ding, and Z. Wei, “Cost minimization
algorithms for data center management,” IEEE Transactions on Parallel
and Distributed Systems, vol. 28, no. 1, pp. 60–71, 2017.

[14] M. Lin, A. Wierman, L. L. Andrew, and E. Thereska, “Dynamic
right-sizing for power-proportional data centers,” IEEE/ACM
Transactions on Networking (TON), vol. 21, no. 5, pp. 1378–1391,
2013.

[15] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo:
amazon’s highly available key-value store,” ACM SIGOPS operating
systems review, vol. 41, no. 6, pp. 205–220, 2007.

[16] H. Brandon, S. Srinivasan, M. Priya, Y. Yiannis, S. Puneet, B. Sujata,
and M. Nick, “Elastictree: Saving energy in data center networks,”
in Proceedings of the 7th USENIX Conference on Networked Systems
Design and Implementation, 2010, pp. 249–264.

[17] X. Meng, V. Pappas, and L. Zhang, “Improving the scalability of
data center networks with traffic-aware virtual machine placement,” in
INFOCOM, 2010 Proceedings IEEE. IEEE, 2010, pp. 1–9.

[18] D. Ito, M. Mohri, Y. Shiraishi, and M. Morii, “Cloud storage
with key-value stores over content-centric networking architecture,”
in Ubiquitous Computing, Electronics & Mobile Communication
Conference (UEMCON), IEEE Annual. IEEE, 2016, pp. 1–6.

[19] S. Bharti and K. K. Pattanaik, “Dynamic distributed flow scheduling with
load balancing for data center networks,” Procedia Computer Science,
vol. 19, pp. 124–130, 2013.

[20] [Online]. Available: https://www.youtube.com/

6


