
DDSS: Dynamic Dedicated Servers Scheduling for
Multi Priority Level Classes in Cloud Computing

Husnu S. Narman∗
husnu@ou.edu

Md. Shohrab Hossain†
mshohrabhossain@cse.buet.ac.bd

Mohammed Atiquzzaman∗
atiq@ou.edu

∗School of Computer Science, University of Oklahoma, Norman, OK 73019
†Department of Computer Science and Engineering, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh

Abstract—Simplicity of usage, flexibility of data access, ease of
maintenance, time and energy efficiency, and pay as you go policy
have increased the usage of cloud computing over traditional
computing. Cloud computing should be able to meet the per-
formance expectations of different classes of customers. On the
contrary, inefficient scheduling algorithms decrease the quality
of service experienced by users. To improve quality of service,
there are several proposed scheduling algorithms in the literature.
However, these scheduling algorithms are limited because they
do not consider different types of customers. Our objective is
to satisfy performance expectations of customers by proposing
an efficient Dynamic Dedicated Server Scheduling (DDSS) while
considering different types of customers. Results show that the
customer drop rate and throughput can be significantly improved
by DDSS. Our proposed scheduling and related analysis will help
cloud service providers build efficient cloud computing service
architectures through considering different types of priority class
performances such as, drop rate, throughput, and utilization.

Index Terms—Cloud Computing, analytical modeling, homo-
geneous, multi server, multi class, queuing system.

I. INTRODUCTION

Simplicity of usage, flexibility of data access, ease of main-
tenance, time and energy efficiency, and pay as you go policy
have increased the usage of cloud computing over traditional
computing [1], [2]. However, inefficient cloud server schedul-
ing can lead to unwanted long delay and lower throughput.

The scheduling system needs to be suitable for different
types of incoming service requests (from different classes
of customers) [3], [4] because cloud computing systems can
consist of different customer classes (such as, paid and unpaid
customers). For example, expectations of paid customers are
much higher than unpaid ones; this also implies some customer
classes must have higher priority than others. Priority defini-
tion in cloud computing is different than the general definition
of priority in queuing systems. In cloud computing, priority
can be used to decide the next customer to be served and
allocate the amount of resources for each customer class. Fig. 1
shows high and low priorities with and without priority levels.
In cloud computing, low and high priority classes can be
assigned to different priority levels and this can help in getting
different quality of service from cloud servers. Therefore,
some measure is needed to quantify the difference between
high and low priorities. In addition, scheduling algorithms

High

Low

Without priorty level
in queuing theory

High (Ψ1=4)

3

With priorty level
in cloud computing

Low (Ψ2=1)

High (Ψ1=5)

4

With priorty level
in cloud computing

Low (Ψ2=1)

U
n
k
n
o
w

n
Fig. 1. High and Low class priorities without and with priority level.

need to use resources (such as, services) efficiently. There-
fore, the scheduling algorithm for cloud computing should
efficiently fulfill desired expectations of different classes of
customers without wasting resources [1].

Several research works [5]–[7] have been reported in the
literature that proposed scheduling algorithms for cloud com-
puting. Authors in [5], [7] proposed a queuing based analysis
and scheduling model for performance evaluation of cloud sys-
tems using web applications as queues and virtual machines as
service providers. Though creating unlimited virtual machines
for each connection increases allocation rates, this dramatically
decreases the performance of the system due to high response
times [5] for each service request. Yang et al. [6] proposed
a fault recovery system scheduling for cloud services and
analyzed the system as an open queue problem. However, the
result showed that addition of fault recovery increases average
response times.

There have been a few research works [8]–[11] reported in
the literature that analyzed the performance of cloud comput-
ing systems. Authors in [8], [11] evaluated the performance
of several cloud service providers (such as, Amazon EC2,
GoGrid) for scientific computing tasks, and found that the
service providers are not ready to serve large data sets.
Authors in [9], [10] used single class and single queue models
to analyze the performance of cloud computing and found
several performance distributions. However, none of the above
works [5]–[11] considered the real case scenarios of cloud
servers having different classes of customers (such as, unpaid
and paid customers).

hsnarman@hotmail.com
Typewritten text
 2014 IEEE International Conference on Communications (ICC)



To the best of our knowledge, only Ellens et al. [3] and Hu
et al. [4] proposed scheduling algorithms for cloud services
having multiple customer classes. Hu et al. [4] used shared and
Dedicated Server Scheduling (DSS) for two priority classes
and obtained minimum number of servers to serve each class
to satisfy certain performance. Ellens et al. [3] proposed hybrid
scheduling that use two priority classes and reserves some
servers for each class and shares remaining servers. However,
these two works have not considered the class priority level
difference as shown in Fig. 1. In this paper, we have proposed
a novel scheduling algorithm that uses the priority level of
classes, customer arrival rates, and number of services to
dynamically update service rates (or number of dedicated
servers) for each class of customers. We have also showed
the impacts of the priority level of classes on the performance
of the cloud computing system and compared our proposed
Dynamic Dedicated Server Scheduling (DDSS) with DSS
models.

The objective of this work is to improve performance of
cloud systems in terms of throughput, drop rate, and utilization
by considering class priority level. The contributions of this
work are: (i) proposing Dynamic Dedicated Server Scheduling
(DDSS) to fulfill the desired expectations for each level of
priority class in the system, (ii) developing an analytical model
to evaluate the performance (average occupancy, drop rate,
average delay, and throughput for each class) of the proposed
scheduling algorithm, (iii) validating our analytical model by
an extensive simulation, and (iv) using class-based analysis to
compare the class performances of DDSS and DSS.

Results show that the drop rate and throughput of cus-
tomers can be significantly improved by using appropriate
priority levels for classes in the proposed DDSS system. Our
proposed realistic scheduling algorithm and related analysis
will help cloud service providers build efficient cloud service
architecture by considering different types of priority class
performances, such as, drop rate, throughput, and utilization.

The rest of the paper is organized as follows. In Section II,
we explain the typical DSS and proposed DDSS architectures.
Section III presents the analytical model to derive different
performance metrics of DDSS. In Section IV, we present
the simulation and numerical results and compare the perfor-
mances of DDSS and DSS systems. Finally, Section V has the
concluding remarks.

II. PROPOSED DYNAMIC DEDICATED SERVERS
ARCHITECTURE (DDSS)

Fig. 2 shows the DSS architecture for class 1 (C1) and
class 2 (C2) customers. Here, some servers are used for C1

customers while other servers are used for C2 customers. The
customer arrival rates of C1 and C2 are λ1 and λ2, respec-
tively. Each class of customers are queued in the corresponding
queues (Q1 and Q2). A new arriving customer will be dropped
if buffers are full. The service rate of each server is µ. Each
class of traffic is solely assigned to each dedicated server as
shown in Fig. 2.

C
la

ss
if

ie
r

λ

µ

µ

µ

µ

µ

λ1

λ2 µ

S
c
h
e
d
u
le

r

Q1

F
ix

e
d
 n

u
m

b
e
r 

o
f 

se
rv

e
rs

Q2

Fig. 2. Dedicated Servers Scheduling (DSS) Architecture.

In the typical DSS [3], [4], there is absolutely no sharing of
traffic among dedicated servers, and the number of servers for
each class is not updated dynamically. However, our proposed
DDSS scheme (see Fig. 3) frequently updates the number of
dedicated servers for each class according to their priority
levels and arrival rates.

C
la

ss
if

ie
r

λ

µ

µ

µ

µ

µ

λ1

λ2 µ

S
ch

ed
u
le

r

Q1

C1 priority level (=Ψ1)

newly assigned 
server for C1

N
u
m

b
er

 o
f 

se
rv

er
 a

re
 u

p
d
at

ed
 f

re
q
u
en

tl
y

C2 priority level (=Ψ2)

Q2

Fig. 3. Proposed Dynamic Dedicated Servers Scheduling (DDSS) Architec-
ture.

A. Notations

The notations used in this paper are as follows:
pi Probability of i number of C1 customers in the

system,
λ Arrival rate of customers,
λ1,λ2 Arrival rates of C1 and C2 customers, respectively,
Ψ1,Ψ2 Priority levels of C1 and C2 customers, respectively,
µ Service rate of each server,
l Total number of servers in the system,
m, k Dedicated number of servers for C1 and C2,
N Size of Q1,
δ Average delay of C1 customers,
n Average class occupancy of C1 customers,
D Drop probability of C1 customers,
γ Throughput of C1 customers.

B. Scheduling Algorithm

Our proposed algorithm considers three crucial parameters
that enable dynamic scheduling: (i) the arrival rates of C1

2



and C2 customers (λ1, λ2), (ii) the priority levels of C1 and
C2 customers (Ψ1,Ψ2), and (iii) the total number of servers
in the system (l). These three parameters are used to derive
the number of servers (m and k) assigned to each class of
customers as follows:

m =

⌊
lΨ1λ1

Ψ1λ1 + Ψ2λ2

⌋
(1)

k = l −m (2)

Ψ2λ2 6= 0 guarantees k 6= 0. For example, there are five
servers in the system and two classes of customers having
priority levels, Ψ1 = 5 and Ψ2 = 3, and arrival rates λ1 = 20
and λ2 = 10. By substituting these values in Eqns. (1) and (2),
we get m = 4 and k = 1.

Eqn. (1) can easily be extended for an r multi-class system
by assuming Ψiλi 6= 0 where i = {1, ...r} as follows:

m1 =

⌊
lΨ1λ1

Ψ1λ1 + Ψ2λ2 + . . .+ Ψrλr

⌋
(3)

Here, m1 is the number of servers assigned to class 1. After
finding m1, remaining number of servers are l1 = l − m1.
Hence, the number of servers assigned to class 2 can be
obtained as follows:

m2 =

⌊
l1Ψ2λ2

Ψ2λ2 + Ψ3λ3 + . . .+ Ψrλr

⌋
(4)

Iteratively following Eqns. (3) and (4), dedicated number of
servers for each class can be measured.
The scheduling algorithm is as follows:

• Different class of customers are assigned to different
servers.

• To avoid service degradation, servers simultaneously
serve only limited number of customers.

• Number of assigned servers to each class is updated
regularly based on the Eqns. (1) and (2).

When the scheduling algorithm computes the new values of
m and k, some of the servers (which were previously serving
C2) will be assigned to C1 (see Fig. 3). The servers will
continue to serve C2 customers until they finish their request.
However, scheduling algorithm will not assign any new C2

customer to the servers which are recently assigned to C1. This
strategy protects the customers (in service) from experiencing
large delay or drop.

III. ANALYTICAL MODEL

The analytical model to derive different performance met-
rics of the DDSS architecture is presented in this section.

A. Assumptions

To make the model analytically tractable, it is assumed that
the queuing system is under heavy traffic flows, customer
arrivals follow Poisson distribution, and service times for cus-
tomers are exponentially distributed. Type of queue discipline
used in the analysis is FIFO. Service rate of all servers are
equal (meaning the system is a homogeneous system).

The service rate of the system is state dependent. With one
customer in the system, the service rate is µ; with two cus-
tomers in the system, the service rate is 2µ. The service rate of
the system increases until all the servers are utilized (m servers
for C1 customers and k servers for C2 customers). Then the
total service rate of the system is fixed at mµ and kµ (using
Eqns. (1) and (2)) for C1 and C2 customers, respectively. Only
C1 customers performance metrics are derived in this section
based on [12]. However, performance metrics (such as, average
occupancy, average delay, drop rate, and throughput) of C2 can
be derived easily using k instead of m in Eqns. (7), (8), (11),
and (12).

B. State Probabilities

λ1 λ1 λ1 λ1 λ1

(m-1)µ

λ1

p1
p2 pm-1 pm pm+1 pm+N

p0

µ 2µ mµ mµ mµ

Fig. 4. State transition diagram for the model

Fig. 4 shows the state transaction diagram of the proposed
DDSS model where pi represents probability of i customers
from C1 in the system. λ1 and iµ represent the state transition
probabilities, where i = 1, 2, . . . , m. Based on the state transi-
tion diagram in Fig. 4, state probabilities can be formulated. D
and γ can be computed for homogeneous multi-server system
by using state probabilities [13]. In short, state probability
equations can be written as follows by using M/M/c/N [12]–
[14]:

pi =

{
p0

ρi

i! , 1 ≤ i ≤ m
p0

mm

m! ρ
i
2 ,m < i ≤ m+N

(5)

Using
m+N∑
i=0

pi = 1, we get

p−1
0 =


1 +

m∑
i=1

ρi

i! + mm

m!

m+N∑
i=m+1

ρi2 , ρ2 6= 1

1 +
m∑
i=1

ρi

i! +N mm

m! , ρ2 = 1
(6)

where ρ = λ1/µ and ρ2 = λ1/mµ

C. Drop Probability and Throughput

The drop probability of the model is the final state proba-
bility which is pm+N . Therefore, the drop rate and throughput
of the model can be obtained as follows:

D = p0
mm

m!
ρm+N
2 (7)

γ = λ1(1−D) (8)

3



1 2 3 4 5 6 7 8 9 10
λ1

0

5

10

15

20

25

30

O
cc

up
an

cy
(c

us
to

m
er

s)
Ψ1 = 2, Ψ2 = 1

C1 (anl)
C1 (sim)
C2 (anl)
C2 (sim)

Fig. 5. Average class occupancy of DDSS
obtained through simulations and analytical
model.

1 2 3 4 5 6 7 8 9 10
λ1

0.00

0.05

0.10

0.15

0.20

0.25

0.30

D
ro

p
R

at
e

Ψ1 = 2, Ψ2 = 1

C1 (anl)
C1 (sim)
C2 (anl)
C2 (sim)

Fig. 6. Class drop rate of DDSS obtained
through simulations and analytical model.

1 2 3 4 5 6 7 8 9 10
λ1

0

2

4

6

8

10

12

14

16

T
hr

ou
gh

pu
t

(c
us

to
m

er
s)

Ψ1 = 2, Ψ2 = 1

C1 (anl)
C1 (sim)
C2 (anl)
C2 (sim)

Fig. 7. Class throughput of DDSS obtained
through simulations and analytical model.

D. Average Class Occupancy and Delay

The average class occupancy and average delay can be
formulated by using state probabilities [13]. The average class
occupancy, (n) for M/M/1/N queue is as follows:

n =

N∑
j=1

jpj (9)

However, M/M/c/N queue system has m servers and from
the above state probabilities (Eqn. (5)), n is given by

n =

m+N∑
j=m+1

(j −m)pj (10)

which gives the following expressions for n:

n =

p0ρ2
mm

m!

(
1−(N+1)ρN2 +NρN+1

2

(1−ρ2)2

)
ρ2 6= 1

p0
mm

m!

(
N(N+1)

2

)
ρ2 = 1

(11)

Using Little’s law and Eqns. (8) and (11), the average delay
can be obtained as follows:

δ =
n

γ
(12)

IV. RESULTS

Discrete event simulation has been carried out under the
assumptions and scheduling policies mentioned in Section II.
We have followed M/M/c/N [13] procedures to implement
the simulation. Each buffer has a capacity to hold only 30
customers and there are six servers, each having service rate
of µ = 5. We ran each simulation with 20000 samples for
10 trials having different arrival rates and priority levels as
follows:
λ1 = {i, j}, λ2 = {i, 2j}, where i = 1,2, . . . ,5 and j = 6,7,
. . . ,10 and Ψ1 = {1.5, 2, 5}, Ψ2 = {1}.

A. Validation of Analytical Model

In this subsection, we show the analytical and simulation
results of the proposed DDSS architecture and compare them
to validate our analytical approach.

1) Average Occupancy: Fig. 5 shows the average class oc-
cupancy of DDSS obtained through simulations and analytical
model. The simulation and analytical results are very close to
each other. The average occupancies of C1 and C2 are very
low upto λ1 = 5 because of the low arrival rates of both
classes. After that, although both classes are served by equal
number of servers, occupancy of C2 increases sharply. There
are two reasons for this: (i) the arrival rate of C2 is twice the
arrival rate of C1, and (ii) the priority level of C1 is twice the
priority level of C2.

2) Drop Rate and Throughput: Figs. 6 and 7 show the
drop rate and throughput, respectively for both classes. The
analytical results closely match with the simulation results in
both cases. The drop rate of C2 is higher than the drop rate
of C1 after λ1 = 6 because the priority level of C2 is not
high enough (while arrival rates of C2 are high) to get more
servers.

Thus, it is evident that the obtained analytical and simulation
results in Figs. 5, 6, and 7 are close to each other, thereby
validating our analytical model.

B. Effects of Priority Levels on Performance of Classes

In this subsection, we present the impact of class priority
levels and arrival rates on the performance of classes in DDSS
approach. Moreover, significance of priority levels of each
class are compared by keeping the value of Ψ2 fixed 1 while
changing the value of Ψ1 at 1.5, 2, and 5. DDSS and DSS
can be compared with respect to two important aspects: (a)
How does the priority levels of classes affect the performance
of classes in the system? 2) How are the performances of
classes affected when using dynamically updated services in
DDSS vs. fixed services in DSS? In this paper, we have
only compared the impacts of the class priority levels on the
class performances. Therefore, we assume that the DSS can
dynamically update assigned number of servers for each class
based on arrival rate as is done in DDSS. However, in reality
DSS cannot update the assigned number of servers [4]. The
class priority levels in DSS are constant and are assumed to
be Ψ1 = 2 and Ψ2 = 1. Therefore, we compare the impact of
class priority level on the class performance with respect to
utilization, drop rate, throughput, and occupancy.

4



1 2 3 4 5 6 7 8 9 10
λ1

0

5

10

15

20

25

30

O
cc

up
an

cy
(c

us
to

m
er

s)
� DSS Ψ1 = 2, Ψ2 = 1
� DDSS Ψ1 = 5, Ψ2 = 1

C1 (DSS)
C1 (DDSS)
C2 (DSS)
C2 (DDSS)

Fig. 8. Average class occupancies for DDSS
and DSS.

1 2 3 4 5 6 7 8 9 10
λ1

0.0

0.1

0.2

0.3

0.4

0.5

D
ro

p
R

at
e

� DSS Ψ1 = 2, Ψ2 = 1
� DDSS Ψ1 = 5, Ψ2 = 1

C1 (DSS)
C1 (DDSS)
C2 (DSS)
C2 (DDSS)

Fig. 9. Class drop rates for DDSS and DSS.

1 2 3 4 5 6 7 8 9 10
λ1

0

2

4

6

8

10

12

14

16

T
hr

ou
gh

pu
t

(c
us

to
m

er
s)

� DSS Ψ1 = 2, Ψ2 = 1
� DDSS Ψ1 = 5, Ψ2 = 1

C1 (DSS)
C1 (DDSS)
C2 (DSS)
C2 (DDSS)

Fig. 10. Class throughput for DDSS and DSS.

1 2 3 4 5 6 7 8 9 10
λ1

0

5

10

15

20

25

30

O
cc

up
an

cy
(c

us
to

m
er

s)

� DSS Ψ1 = 2, Ψ2 = 1
� DDSS Ψ1 = 1.5, Ψ2 = 1

C1 (DSS)
C1 (DDSS)
C2 (DSS)
C2 (DDSS)

Fig. 11. Average class occupancies for DDSS
and DSS.

1 2 3 4 5 6 7 8 9 10
λ1

0.0

0.1

0.2

0.3

0.4

0.5
D

ro
p

R
at

e

� DSS Ψ1 = 2, Ψ2 = 1
� DDSS Ψ1 = 1.5, Ψ2 = 1

C1 (DSS)
C1 (DDSS)
C2 (DSS)
C2 (DDSS)

Fig. 12. Class drop rates for DDSS and DSS.

1 2 3 4 5 6 7 8 9 10
λ1

0

5

10

15

20

T
hr

ou
gh

pu
t

(c
us

to
m

er
s)

� DSS Ψ1 = 2, Ψ2 = 1
� DDSS Ψ1 = 1.5, Ψ2 = 1

C1 (DSS)
C1 (DDSS)
C2 (DSS)
C2 (DDSS)

Fig. 13. Class throughput for DDSS and DSS.

1) Average Class Occupancy: Figs. 8 and 11 show the
average occupancies for the proposed DDSS and DSS architec-
tures. Fig. 8 shows that there is no significant difference in C1

occupancies between DSS and DDSS although C2 occupancy
of DSS is much lower than C2 occupancy of DDSS. This is
because of fewer number of servers assigned to C2 and larger
number of servers assigned to C1 in DDSS than DDS. As
a result, C2 suffers from large delay in DDSS over DSS. In
addition, C1 occupancy of DSS and DDSS are less than C2

occupancy of DSS and DDSS (see Fig. 8).
In Fig. 11, we change the priority level of C1 customers

from Ψ1 = 5 to Ψ1 = 1.5 while keeping Ψ2 = 1 (constant).
We find that the results are reversed because DDSS have now
flexibility on priority level.

The performance of DSS remains similar because of its non-
flexibility on priority level. C2 occupancy of DDSS is found to
be significantly lower than C2 of DSS although the occupancy
of C1 of DSS is lower than the occupancy of C1 of DDSS (see
Fig.11). It is worth mentioning that C1 and C2 occupancies of
DDSS are almost same while there is larger difference between
C1 and C2 occupancies of DSS. This is because of fewer
number of servers assigned to C1 in DDSS than DSS. If results
in Figs. 8 and 11 are evaluated based on class priority level,
the gap between the average occupancy of C1 and C2 get
significantly larger while the difference between the priority
level of C1 and C2 increases (see the difference between C1

(DDSS) and C2 (DDSS) in Fig. 8) and get close to each other,
while the difference between the priority level of of C1 and
C2 decreases (see the difference between C1 (DDSS) and C2

(DDSS) in Fig. 11).

2) Drop Rate and Throughput: Figs. 9 and 12 show the
class drop rates for DDSS and DSS architectures. Fig. 9 shows
that all of the class drop rates are very low in DSS and DDSS
due to the low arrival rates upto λ1 = 5. However, C2 drop
rate of DDSS is almost twice larger than C2 drop rate of
DSS after λ1 = 5. In both DSS and DDSS, C1 drop rate is
lower than C2 drop rate. These are because fewer number of
servers are assigned to C2 and larger number of servers being
assigned to C1 in DDSS than DSS (see Fig. 9). On the other
hand, when we change Ψ1 = 5 to Ψ1 = 1.5 while keeping
Ψ2 = 1 constant (in Fig. 12), the drop rate of C1 in DDSS is
significantly reduced compared to the drop rate of C2 in DSS
after λ1 = 7. If results in Figs. 9 and 12 are evaluated based
on the class priority levels, the impact of C1 priority levels
on the drop rate is not realized. However, usage of different
C1 priority levels have significant impact on C2 drop rate (see
Fig. 9 for Ψ1 = 5 and Ψ2 = 1 and Fig. 12 for Ψ1 = 1.5 and
Ψ2 = 1).

Figs. 10 and 13 show the class throughput for DDSS and
DSS. Upto λ1 = 5, the throughput of C1 and C2 for DSS and
DDSS are similar since the assigned number of servers are
enough to serve the related traffic. However, in Fig. 10, C2

throughput of DSS is higher than that of DDSS (while there is
no difference between C1 throughput) when λ1 = 5, .., 10. For
C1, the number of servers assigned to C1 in DSS are enough
to serve C1 customers. On the other hand, Fig. 13 shows that
C2 throughput of DDSS is higher than C2 throughput of DSS
while the throughput of C1 for DSS and DDSS are same (when
Ψ1 changes from 5 to 1.5 for DDSS). This shows how the
priority level and DDSS can increase C2 throughput of the

5



1 2 3 4 5 6 7 8 9 10
λ1

0.0

0.5

1.0

1.5

2.0

U
ti

liz
at

io
n

� DSS Ψ1 = 2, Ψ2 = 1
� DDSS Ψ1 = 5, Ψ2 = 1

C1 (DSS)
C1 (DDSS)
C2 (DSS)
C2 (DDSS)

Fig. 14. Utilization of the classes for DDSS and DSS while
Ψ1 = 5 for DDSS.

1 2 3 4 5 6 7 8 9 10
λ1

0.0

0.5

1.0

1.5

2.0

U
ti

liz
at

io
n

� DSS Ψ1 = 2, Ψ2 = 1
� DDSS Ψ1 = 1.5, Ψ2 = 1

C1 (DSS)
C1 (DDSS)
C2 (DSS)
C2 (DDSS)

Fig. 15. Utilization of the classes for DDSS and DSS while
Ψ1 = 1.5 for DDSS.

system without affecting the other class.
3) Utilization: Utilization is a performance measure which

reflects the efficiency of server usage. Here, the utilization is
computed as the ratio of incoming class arrival rates to the
total service rates (of all the dedicated servers) for the same
class. We are interested in the impact of changes in the priority
levels on the utilization of the system. Figs. 14 and 15 show the
utilization of two classes for DSS and DDSS architectures. The
gap between utilization values are higher in Figs. 14 (where the
difference of the priority levels of two classes is 1) compared
to the gaps in Fig. 15. The utilization gap between C1 and C2

in Fig. 15 is almost zero (where where the difference of the
priority levels of two classes is 0.5). It is worth mentioning
that increased C1 priority level reduces C1 utilization while
improving C2 utilization due to low C1 arrival rates.

C. Summary of Results

Based on the results, we make the following observations:
(i) the class priority levels do not significantly affect the
performance of classes when the system is under low traffic
for both DSS and DDSS architectures, (ii) under heavy traffic,
the class priority levels have direct impact on the class per-
formances in DDSS architecture, (iii) the system can become
more efficient based on the selected class priority levels in
DDSS than DSS, although assuming DSS can dynamically
update the assigned number of servers for each class based on
arrival rates (Ψ1 = 1.5 and Ψ2 = 1 in Fig. 13).

V. CONCLUSION

In this paper, we have proposed a scheduling algorithm for
cloud computing by considering priority between customer
classes. Analytical formulations of the proposed Dynamic
Dedicated Server Scheduling are presented through different
cases of priority levels. Performances of different classes under
realistic scenarios have been compared through extensive
simulations. Results show that DDSS architecture has the
capability to improve the class throughput and reduce the
drop rate without decreasing the performance of the high
priority class while using system resources efficiently through
appropriate level of priority. Therefore, DDSS makes cloud
computing systems more efficient. The results obtained in
this paper will help cloud service providers build efficient

cloud computing service architectures for different types of
customers.

REFERENCES

[1] W. Kim, “Cloud Computing: Today and Tomorrow,” Journal of Object
Technology, vol. 8, pp. 65–72, Jan 2009.

[2] L. Wang, G. Laszewski, A. Younge, X. He, M. Kunze, J. Tao, and C. Fu,
“Cloud computing: a perspective study,” New Generation Computing,
vol. 28, no. 2, pp. 137–146, Apr 2010.

[3] W. Ellens, M. Zivkovic, J. Akkerboom, R. Litjens, and H. van den Berg,
“Performance of cloud computing centers with multiple priority classes,”
in IEEE 5th International Conference on Cloud Computing (CLOUD),
Honolulu, HI, June 24-29, 2012, pp. 245–252.

[4] Y. Hu, J. Wong, G. Iszlai, and M. Litoiu, “Resource provisioning for
cloud computing,” in Conference of the Center for Advanced Studies on
Collaborative Research (CASCON ’09), Riverton, NJ, 2009, pp. 101–
111.

[5] V. Goswami, S. S. Patra, and G. B. Mund, “Performance analysis
of cloud with queue-dependent virtual machines,” in 1st International
Conference on Recent Advances in Information Technology (RAIT),
Dhanbad, Mar. 15-17, 2012, pp. 357–362.

[6] B. Yang, F. Tan, Y.-S. Dai, and S. Guo, “Performance evaluation of
cloud service considering fault recovery,” in Cloud Computing, Beijing,
China, Dec. 1-4, 2009, pp. 571–576.

[7] H. peng Chen and S. chong Li, “A queueing-based model for per-
formance management on cloud,” in 6th International Conference on
Advanced Information Management and Service (IMS), Seoul, Nov. 30-
Dec. 2, 2010, pp. 83–88.

[8] A. Iosup, S. Ostermann, N. Yigitbasi, R. Prodan, T. Fahringer, and
D. H. J. Epema, “Performance Analysis of Cloud Computing Services
for Many-Tasks Scientific Computing,” IEEE Transactions on Parallel
and Distributed Systems, vol. 22, pp. 931–945, June 2011.

[9] H. Khazaei, J. Misic, and V. Misic, “Performance analysis of cloud com-
puting centers using M/G/m/m+r queuing systems,” IEEE Transactions
on Parallel and Distributed Systems, vol. 23, no. 5, pp. 936–943, May
2012.

[10] K. Xiong and H. G. Perros, “Service Performance and Analysis in Cloud
Computing,” in IEEE Congress on Services, Los Angeles, CA, July 6-10,
2009, pp. 693–700.

[11] S. Ostermann, A. Iosup, N. Yigitbasi, R. Prodan, T. Fahringer, and
D. Epema, “A Performance Analysis of EC2 Cloud Computing Services
for Scientific Computing,” Telecommunications Policy, vol. 34, pp. 115–
131, Oct 2010.

[12] F. S. Q. Alves, H. C. Yehia, L. A. C. Pedrosa, F. R. B. Cruz, and
L. Kerbache, “Upper bounds on performance measures of heterogeneous
M/M/c queues,” Mathematical Problems in Engineering, vol. 2011, May
2011.

[13] D. Gross and C. M. Harris, Fundamentals of Queueing Theory (Wiley
Series in Probability and Statistics). Wiley-Interscience, Feb 1998.

[14] H. Narman, M. S. Hossain, and M. Atiquzzaman, “Multi class traffic
analysis of single and multi-band queuing system,” in IEEE Global
Communications Conference (GLOBECOM), Atlanta, GA, Dec 9-13,
2013.

6


