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Abstract—Understanding the topological characteristics of
communications networks is essential to the design and operation
of such networks. Accordingly, the researchers have been ana-
lyzing the topological characteristics of various networks. In this
paper, we focus on multi-hop wireless networks with uniformly dis-
tributed nodes in 2D and 3D environments. Using the geometrical
relations in 2D, researchers have provided analytical formulas
for some topological characteristics. However, generalizing this
approach to 3D is difficult as it requires to carefully analyze
several geometrical relations that overlap. Instead, we consider
the distance distribution between two random points, which
has been extensively studied in both 2D and 3D. Using these
important results, we derive analytical formulas for various
topological characteristics in both 2D and 3D. Using simulations,
we verify the correctness of our analytical formulas.

Keywords: Random Networks; Topological characteristics;
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I. INTRODUCTION

Multi-hop wireless networks have been receiving signif-
icant attention due to their potential use in various real-
life applications [1]. Accordingly, the research community
has been extensively investigating these networks in different
forms such as WSN [2], [3], MANET [4], Mesh [5]. In
many applications (e.g., forest or border monitoring), wire-
less nodes are expected to be uniformly distributed through
random deployment in a given environment. One of the key
issues during the deployment and operation of such multi-
hop wireless networks is how to determine various system
parameters (e.g., transmission range r, the number of nodes
n) so that the resulting topology can support the given mission
while leading to efficient use of the underlying resources.

For example, an operator may want to know what would be
the best value for r and n so that the average path length is
less than a certain number. In another case, an operator may
want to select r such that the average degree will be less than
a certain number to reduce interference between neighboring
nodes. To answer such questions, it is necessary to understand
how various parameters impact the topological characteristics
of multi-hop wireless networks. This understanding is also
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essential to performance evaluation studies requiring realistic
topologies.

To understand topological characteristics, one can use sim-
ulations to randomly generate networks under various param-
eters and analyze them. However, simulations cannot consider
every possible case or answer various what-if questions in
a timely manner, necessitating the development of analytical
formulas. Therefore, we focus on developing analytical for-
mulas for the topological characteristics of multi-hop wireless
networks. Since such networks can be randomly deployed in
2D (e.g., field, forest) or 3D (e.g., ocean, air) environments,
we derive analytical formulas for both 2D and 3D. We use
simulations to verify the correctness of the analytical formulas.

As we review in Section II, the most related work to ours
considers geometrical relations in 2D and obtains analytical
formulas for link probabilities [6], [7]. These probabilities are
then used to determine other characteristics such as average de-
gree. However, generalizing this approach to 3D was difficult
(if not impossible) due to the excessive amount of geometrical
relations that need to be considered while avoiding overlaps.
Instead, we took another approach, where we compute the link
probabilities using the distance distribution between any two
random points. Finding the distance distribution between two
random points is a challenging problem by itself. Fortunately,
we found out that the researchers in other areas have done
significant work on finding the distance distribution between
two random points in both 2D and 3D [8], [9].

Accordingly, we consider these results (specifically, the ones
collectively presented in [10]) and compute link probabilities
in both 2D and 3D. We then use these link probabilities to
determine analytical formulas for average node degree and
average path length (hop count) of the randomly deployed
wireless networks in 2D and 3D. We also give an approxima-
tion result for diameter for 3D by using similar idea with [6].
Using simulations, we verify the correctness of our analytical
formulas.

The rest of this paper is organized as follows. In section II
we review the related work. In Section III we describe the
network model and simulation environment used throughout
this paper. In Section IV we derive the link probabilities by
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using distance distributions in 2D and 3D, and verify the
correctness of these link probabilities using simulations.In
Section V, we derive the analytical formulas for the three
topological characteristics that we mentioned before, and
verify their correctness using simulations. Finally, we conclude
this paper in Section VI.

II. RELATED WORKS

Researchers have studied the topological characteristic of
wireless networks under various assumptions while mainly
considering networks in 2D. In [11], the authors simulated
random, wireless sensor, regular, and small world networks
to compare the network by using average path length, cluster
coefficient, and average degree.They concluded that the topol-
ogy of wireless network is between random and small-world
network. The authors in [12], [13], [14] mainly researched on
connectivity of wireless network using poisson and geometric
network models. In [14] the author analyzed k-connectivity
on homogeneous and heterogeneous ad hoc networks by using
πr2

A as the estimate for link probability, where A is the area of
the field where the network is deployed. In [12] the authors
used πr2

A in finding upper and lower bound disjoint paths be-
tween two nodes by making their network model be similar to
poisson random graph. In [13], the authors again used πr2

A for
boundless area network to approximate communication link
probability formula for bounded area network and analyzed
k-connectivity and k-edge-connectivity.

Since the methods in [12], [13], [14] rely on approximate
link probability, they cannot give exact results about topolog-
ical characteristics. As discussed in the previous section, the
authors in [6], [7] developed a better formula for communi-
cation link probability between two nodes in a unit square. In
this paper, we made the link probability formula more accu-
rate using the distance distribution. We also generalized our
approach and developed analytical formulas for the topological
characteristics of the networks in 3D while it was difficult to
generalize the methods using geometrical relations to 3D.

III. NETWORK MODEL AND SIMULATION ENVIRONMENT

In 2D we consider the same multi-hop wireless network
model that is used in the literature [6], [7]. In this model,
the wireless nodes having the same transmission range r are
uniformly distributed in a normalized unit square of 1 × 1,
where 0 < r ≤ 1. Similarly, we generalize this model for
3D such that the wireless nodes having the same transmission
range r are uniformly distributed in a unit cube of 1× 1× 1,
where again 0 < r ≤ 1. In both 2D and 3D, wireless nodes
can directly communicate with each other by broadcasting
radio waves if the distance between them is less than the
transmission range r. Otherwise, these nodes can indirectly
communicate with each other through a path if there is one.
So the multi-hop network that we consider in 2D or 3D is
a graph G = (V,E), where V = {v1, v2, v3, v4, . . . , vn} and
E = {(vi, vj) | d(vi, vj) ≤ r, i 6= j, i = 1, 2, . . . n, j =
1, 2, . . . n}. Note that d(vi, vj) is the distance between vi and
vj , and r is the normalized transmission range.

In our simulations, we simply follow the above model and
randomly place the nodes in a unit square and a unit cube.
After positioning the nodes, we find the distance between
every pair of nodes by simply using the well known Euclidian
distance formula. If the distance between two nodes is smaller
than the given r, we put a link between them.
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Fig. 1: Sample multi-hop wireless networks in 2D and 3D with
n = 50 and r = 0.30.

For instance, Figure 1 shows a sample network with n = 50
and r = 0.30 in 2D and 3D. In actual simulations conducted
in the following two sections, we consider several replications
of the networks with varying the number of nodes n and
transmission ranges r.

IV. LINK PROBABILITIES IN 2D AND 3D

To derive analytical formulas for various topological char-
acteristics of multi-hop wireless networks, we need to first
determine the link probability. We can formally define the
link probability as Prob[d(u, v) ≤ r], where d(u, v) is the
distance between two arbitrary nodes u and v, and r is the
communication range. In this section, we determine analytical
formulas for the link probabilities in 2D and 3D, and verify
their correctness using simulations. In the next section, we will
use these probabilities to determine analytical formulas for the
topological characteristics mentioned before.

A. Link Probability in 2D

Using geometric relations between the communication cir-
cle with radius r and a unit square of 1× 1, the author in [6]
computed the link probability as a function of r. The idea here
is to first position an arbitrary node u and then determine what
percent of the other nodes will fall within the communication
circle of node u. For this, we need to compute the area of the
intersection between the communication circle of the node u
and the unit square. Since we are considering a unit square
and a normalized transmission range, this area directly gives
us the probability of having links between node u and other
nodes in the network, i.e., the link probability.

Computing this area requires to consider several cases. For
example, the simplest case is that node u is located r units
away from every edge of the unit square and r is less than
0.5. In this case, the communication circle of the node u will
be fully contained in the unit square. So the intersection area
(i.e., the link probability) is simply computed as πr2. In other
cases (e.g., node u is located less than r units away from one



of the edges of the unit square), the communication circle of
node u will not be fully contained in the unit square, requiring
some efforts to compute the area. The author in [6] examined
several such cases and derived the following formula for link
probability in 2D when 0 ≤ r ≤ 1:

Fgeo(r)
def
= πr2 − 8

3
r3 +

(
11

3
− π

)
r4 (1)

Finding such a formula in 3D requires to analyze several
geometric relations. Also it is difficult (if not impossible)
to avoid the overlaps between different cases even in 2D.
Therefore, we decided to consider the extensively studied
distance distributions between randomly positioned nodes in a
unit square and a unit cube. Actually, the distance distribution
between two random points has been first studied back in
1950s [8]. In a recent study [10], the author collectively
presented several useful results regarding distance distributions
inside convex bodies of any dimensions. For our purposes, we
will consider only the probability density function (pdf) and
cumulative distribution function (cdf) of the distance between
two random points in a unit square and a unit cube. Note that
when determining link probabilities, we will consider only the
parts of the pdf or cdf that are accounting for the distances
less than 1 because the normalized transmission range r is
less than 1. However, when considering average path length
in Section V, we will consider the cases where the distance is
greater than 1.

Let us first consider how to use distance distribution to find
an analytical formula for link probability in 2D and show
why this new formula is more accurate than the one given
in (1). In 2D, we can directly use the cdf in [10] (page 858).
Fortunately, since we are interested in the distance less than the
communication range r, we will take just the part accounting
for the distance less than 1. Accordingly, we can give the link
probability with our notation as follows when 0 ≤ r ≤ 1.

F2D(r)
def
= r2

(
r2

2
− 8r

3
+ π

)
(2)

Clearly, Fgeo(r) and F2D(r) look similar. However, there
is a small difference as shown below:

ε = Fgeo(r)− F2D(r) = r4
1

42
(3)

F2D(r) is more accurate than Fgeo(r) because some geomet-
ric overlaps are not accurately accounted for when determining
Fgeo(r). Another way to show the accuracy of F2D(r) over
Fgeo(r) is to test them when r = 1. In that case, F2D(1) is
approximately 0.97 while Fgeo(1) is 1. But the latter cannot
be true because even when r = 1 there will be no edges
between the nodes located around the opposite corners of the
unit square as the length of the diagonal is

√
2. So even when

r = 1, the link probability should be less than 1, as more
accurately computed by F2D(r).

B. Link Probability in 3D

To obtain link probability in 3D, we use the distance
distribution in a unit cube, for which a pdf was first found
in [9] and recently also presented in [10] (page 862). The
complete form of this pdf is rather length. However, again
since we are just interested in the distance less than the
communication range r, we will take the part of this pdf
accounting for the distance less than 1. With our notation,
the pdf of the distance inside a cube will be as follows when
0 ≤ r ≤ 1.

f3D(r) = 4πr2 − 6πr3 + 8r4 − r5 (4)

To obtain the link probability in 3D, we need to find cdf by
integrating equation (4) from 0 to r. With our notation, the link
probability that the distance between two random points in 3D
is less than r can be computed as follows when 0 ≤ r ≤ 1:

F3D(r)
def
=
∫ r
0
f3D(t)dt

=
∫ r
0
(4πt2 − 6πt3 + 8t4 − t5)dt

(5)

Note that we change the variable name r to t in pdf function
so that we can take the integral without any confusion. After
taking the integral from 0 to r, we obtain the link probability
in 3D as follows when 0 ≤ r ≤ 1:

F3D(r)
def
=

4πr3

3
− 6πr4

4
+

8r5

5
− r6

6
(6)

C. Verification of Analytically Obtained Link Probabilities by
Using Simulations

In order to show the correctness of the analytical formulas
given in (2) and (6), we conduct some simulations with
different number of nodes n and different values of r. We
have developed our simulation by using Matlab. First of all,
we have randomly distributed nodes in unit square and unit
cube. We have chosen unit cube for easiness but it can easily
be modified for any size of square and cubes. Then we
have counted number of links between nodes by using Euler
distance calculation for a given communication link r. We have
found link probability by dividing number of links to possible
number of links which is n(n−1) where n is number of nodes.
In all cases, our analytical formula perfectly matches with the
simulation results, as shown in Figure 2.

Note that all analytical formulas are actually assume that the
number of nodes n goes to ∞. But through these simulations,
we show that these analytical formulas are still giving accurate
results even when the number of nodes are relatively small.
We should also mention that each data point in the figure
is actually the average of 20 replications, resulting in 95%
confidence intervals to be very small; and thus we did not
included them in the figure. Figure 2 also allows us to make
a few other interesting observations. The link probability in
2D increases faster than that in 3D as r increases. So, to
reach the same link probability, 3D networks need to use more
energy than 2D networks. In both 2D and 3D, the increase in
link probability before r ' 0.6 is much faster than that after
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Fig. 2: Comparison of link probabilities from simulations and
analytical formulas.

r ' 0.6. This information can help operators to determine
up to what level increasing power can significantly improve
link probability. After this point instead of increasing power,
the operators may want to change other parameters to achieve
certain topological characteristics.

For example, suppose an operator wants to increase the con-
nectivity. He can achieve this by increasing the transmission
power of each node or by increasing the number of nodes with
less transmission power. If the power level is already increased
such that r ' 0.6, then the operator may consider increasing
the number of nodes rather than their powers.

V. TOPOLOGICAL CHARACTERISTICS AND THEIR
VERIFICATION USING SIMULATIONS

In this section, we derive analytical formulas for the fol-
lowing topological characteristics, and verify their correctness
through simulations.

• Average Degree: The degree of a node is the number of
nodes that are within its communication range. We try
to determine the average of degrees of all nodes. Degree
is an important characteristic as it is used to determine
transmission interference.

• Diameter: The length of the shortest path that has the
maximum number of hops among all shortest paths
between every pair of nodes. Knowing diameter of a
network will enable operators to determine the worst-case
data transmission latency between any two nodes.

• Average Path Length: The average length of the shortest
paths between every pair of nodes. This can be used
to determine how efficient data transmission will be on
average.

A. Average Degree
The idea behind average degree is to compute the expected

number of links between an arbitrary node u and the other
n − 1 nodes. Since we know the link probabilities from the
previous section,we can easily find average (expected) degree
as follows

EℵD = (n− 1)FℵD(r)

where ℵ is 2 and 3. Accordingly, the analytical formula for
average degree in 2D would be

E2D = (n− 1)

(
r2
(
r2

2
− 8r

3
+ π

))
(7)

and the average degree in 3D would be

E3D = (n− 1)

(
4πr3

3
− 6πr4

4
+

8r5

5
− r6

6

)
(8)

In order to show the correctness of the analytical formulas
given in (7) and (8), we conduct some simulations with
different number of nodes n and different values of r. In
all cases, our analytical formula perfectly matches with the
simulation results, as shown in Figure 3.
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Fig. 3: Comparison of average degrees from simulations and
analytical formulas.

Again each data point in the figure is actually the average
of 20 replications, resulting in 95% confidence intervals to be



very small; and thus we did not included them in the figure.
As we observed before, the link probability in 2D increases
faster than that in 3D. This also cause the average degree in
2D to grow faster than that in 3D, as shown in Figure 3.

B. Diameter
The maximum number of hops are expected to appear on the

shortest paths between the nodes placed in the opposite corners
of the unit square or the unit cube. The distance between
such nodes is approximately equal to the length of the longest
diagonal, which is

√
2 in a unit square and

√
3 in a unit cube.

So a lower bound on the diameter in terms of hop count can
be determined by dividing the length of the longest diagonal
by r as follows:

DiameterℵD ≥

⌈√
ℵ
r

⌉
(9)

where ℵ is 2 and 3. As also shown in [6], the diameter of a
randomly deployed network will be equal to the above lower
bound as the number of nodes, n, goes to ∞.

Using simulations with large number of nodes, we verified
the above asymptotic formula. However, instead of reporting
such exact matches, we would like to see how the above
asymptotic formula captures the general trend even with
smaller number of nodes. Accordingly, we conducted simu-
lations with n=100, 300, and 500 while varying r.
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Fig. 4: Comparison of diameter from simulations and analyt-
ical formulas when n=100, 300, and 500.

Figure 4 presents the comparison results when n=100, 300,
and 500. In both 2D and 3D, analytical diameter formula

almost exactly matches to simulation curve for large values of
r even when n is 100. As the number of nodes increases, we
see better matches with smaller values of r. However, for very
small values of r, the simulated networks are usually not con-
nected because of the small number of nodes. Consequently,
the diameter goes to infinity. Except these very small values
of r and n, the analytical formulas provide good estimate
for diameters in moderate size networks. As the number of
nodes increases, the simulated networks become connected
even with small values of r and their diameters approaches
to the analytical formula.

C. Average Path Length

A lower bound on average path length in terms of hop count
can be determined by dividing the expected distance between
two random points by r. So we need to first find the expected
distance. Since we know the distance pdf’s in 2D and 3D,
say f2D(t) and f3D(t), from [8], [9], we can determine the
expected distance using∫ √ℵ

0

tfℵD(t)dt, (10)

where ℵ is 2 and 3. Note that when computing the link prob-
abilities, we just considered the part of the pdf accounting for
the distances less than 1 because the normalized transmission
range r was less than or equal to 1. But now we are interested
in the average distance in the whole unit square or unit cube.
So we need to consider all the parts of the pdf and take the
above integral from 0 to

√
ℵ, which is the length of the longest

diagonal. We can then compute the lower bound on the average
path length (in terms of hop counts) as follows:

EhopℵD ≥
∫√ℵ
0

tfℵ(t)dt

r
(11)

where ℵ is 2 and 3.
While the parts of the pdf’s accounting for 0 ≤ t ≤ 1 were

easy to integrate, the other parts accounting for 1 < t <
√
ℵ

cannot easily be evaluated due to some trigonometric terms
in them. Fortunately, we have encountered that the average
distances in a unit square and a unit cube are numerically
computed in [15] as 0.52140543 and 0.661707182, respec-
tively.Using these results along with (11),we can determine
the lower bound on average path length in 2D as

Ehop2D ≥
0.52140543

r
(12)

and in 3D as
Ehop3D ≥

0.661707182

r
. (13)

The average path lengths will be equal to the above lower
bounds as n goes to ∞. Actually, we verified this using large
number of nodes in simulations. Instead of these expected
results, again we report the simulations showing how the
above analytical formulas provide a good approximation even
with relatively small number of nodes. For example, Figure 5
shows the result for average path length with r = 0.25 and



varying number of nodes n. Simulation results are close to the
analytical ones and they are getting closer as the number of
nodes increases in both 2D and 3D.

We also conducted simulations with different values of r
while fixing n to moderate sizes such as 100 and 300. As
shown in Figure 6, even when n = 100 the path length closely
follows the lower bound provided by the analytical formulas.
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Fig. 5: Comparison of average path length (number of hops)
from simulations and analytical formulas under different net-
work sizes.

VI. CONCLUSIONS

We considered the topological characteristics of multi-hop
wireless networks with uniformly distributed nodes in 2D
and 3D environments. Using the extensively studied distance
distributions between two random points in 2D and 3D, we
first determined more accurate analytical formulas for the link
probabilities. We then used these link probabilities and derived
analytical formulas for three topological characteristics of
multi-hop wireless networks. We also conducted simulations
to verify our analytical formulas. Such analytical results are
essential to the operators as they try to answer several what-if
questions when setting various system parameters.
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